
3

An Overview of
Covariance-based Change
Detection Methodologies in

Multivariate SAR Image
Time-Series

Ammar MIAN1, 2, Guillaume GINOLHAC2 , Jean Philippe OVARLEZ3,
Arnaud BRELOY4 and Frédéric PASCAL1

1CentraleSupélec, Paris-Saclay University, Gif-sur-Yvette, France
2University Savoie Mont Blanc, Annecy, France

3ONERA, Palaiseau, France
4Paris Nanterre University, France

3.1. Introduction

AQ1

Change detection (CD) for remotely sensed images of the Earth has been a

popular subject of study in the past decades. It has indeed attracted a plethora of

scholars due to the various applications, in both military (activity monitoring) and

civil (geophysics, disaster assessment, etc.) contexts. With the increase in the number

of spatial missions with embedded synthetic aperture radar (SAR) sensors, the amount

of readily available observations has now reached the “big data” era. To efficiently

process and analyze this data, automatic algorithms have therefore to be developed.

Notably, CD algorithms have been thoroughly investigated: the literature on the

subject is dense, and a variety of methodologies can be envisioned1.

1. See Hussain et al. (2013) or Hecheltjen et al. (2014) for overviews.
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Figure 3.1. General procedure for a change detection methodology
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Broadly speaking, a change detection algorithm can be synthesized as in

Figure 3.1, and it relies on three main separate elements:

– a pre-processing phase, in which the time series of images have to be

co-registered, meaning that a geometric transformation is applied so that each pixel

of every image corresponds to the same physical localization. Various methodologies

also considered a denoising step in which the speckle noise is reduced thanks to

filtering techniques (Achim et al. 2003; Foucher and Lopez-Martinez 2014). Finally,

local features can be selected to obtain a more concise (or descriptive) representation

of the data. Among others, some possibilities include wavelet decompositions (Mian

et al. 2017, 2019b), Markov fields (Wang et al. 2013) or principal component analysis

(Yousif and Ban 2013);

– a comparison step, in which the selected features from each date are compared

among themselves. This step consists of building a relevant distance to measure

dissimilarities of the features. Depending on the feature space, there generally exist

many principles (geometry, statistics, etc.) to choose/build this distance;

– a post-processing step, which varies depending on the methodology used for the

comparison step. It can either correspond to a thresholding (Bruzzone and Prieto 2000;

Kervrann and Boulanger 2006) or involve machine learning classification algorithms

(Gong et al. 2016).

In this large context, this chapter proposes an overview of the comparison step

methodologies based on the local covariance matrices of the multivariate pixels. The

scope of this overview can thus be specified by the following remarks:

– the focus is put on unsupervised CD methodologies. The CD problem is indeed

challenging due to the lack of available ground truths, which does not allow applying

supervised methods from the image processing literature. Moreover, it is well known

that SAR images are subjected to speckle noise, which makes traditional optical

approaches prone to high false alarm rates. In this case, unsupervised methodologies,

often based on statistical tools, have yielded interesting approaches;

– we consider multivariate pixels, where the channels can correspond to a

polarimetric diversity, or another kind of diversity depending on the pre-processing.

The main example will be the spectro-angular diversity, obtained through wavelet

transforms (Mian et al. 2019b);

– the presented methodologies are pixel-level, as opposed to object-level ones

(Hussain et al. 2013). In this paradigm, the comparison is done on a local spatial

neighborhood (patches) through the principle of the sliding windows: for each pixel,

a spatial neighborhood is defined and a distance function is computed to compare the

similarities of this neighborhood between the images at different time;

– we consider statistical parametric methodologies, as opposed to non-parametric

ones (Aiazzi et al. 2013; Prendes et al. 2015). Hence, the CD process will rely

on a probability model and its associated parameters. Within this methodology, the
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covariance matrix of the local patches will be considered as a main feature to infer

about changes in the time series.

The covariance-based approach has been a popular subject of study thanks to

the seminal work (Conradsen et al. 2001), which demonstrated its use for CD in

multivariate SAR image time series (ITS). One of its main interests is notably the

possibility to leverage well-established results from the statistical literature, which is

why numerous works consequently followed such an approach. Our aim is therefore

to present a general overview of this topic, as well as recent developments considering

the choice of statistical models, the dissimilarity measure and the use of structured

covariance matrices.

The rest of this chapter is organized as follows. Section 3.2 describes the dataset

and the different scenes used to illustrate the performance of the change detectors2.

Section 3.3 introduces several families of elliptical distributions (and associated

parameters) that can be used to model multivariate SAR images. Section 3.4 details

several dissimilarity functions based on covariancematrices, which are then compared

for CD on the considered datasets. Section 3.5 presents an extension of a statistical

detection methodology that allows us to account for low-rank structures in the

covariancematrix, whose interest is also illustrated on the real dataset. Finally, section

3.6 draws the conclusions and perspectives of this study.

3.2. Dataset description

We consider three SAR ITS datasets from UAVSAR (courtesy of

NASA/JPL-Caltech). The two first scenes are displayed, respectively, in Figures 3.2

(four images) and 3.3 (two images). The CD ground truths for these scenes are

collected from Ratha et al. (2017) and Nascimento et al. (2019) and are shown

in Figures 3.5. The third scene, displayed in Figure 3.4, is referenced under label

Snjoaq_14511 and corresponds to a series of T “ 17 images. The ground truth has

been realized by the present authors. The SAR images correspond to full-polarization

data with a resolution of 1.67 m in range and 0.6 m in azimuth. Since the scatterers

present in the scenes exhibit an interesting spectro-angular behavior, each polarization

of these images can be subject to the wavelet transform from Mian et al. (2019b),

yielding pixels of dimension p “ 12 (only used in the last section). Table 3.1 gives an

overall perspective of the scenes used in the study.

2. The codes (in Python 3.7) for all the change detectors are available at https://github.com/

AmmarMian/WCCM-2019 for section 3.4 and at https://github.com/AmmarMian/Robust-Low-

Rank-CD for section 3.4. The datasets can be obtained from UAVSAR website (https://uavsar.

jpl.nasa.gov) using the labels given and the ground truth may be obtained from the author’s

website: https://ammarmian.github.io/.
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Dataset Url Resolution Scene p T Size
Coordinates

(top-left px)

UAVSAR

SanAnd_26524_03 Segment 4

April 23, 2009 - May 15, 2011

https://uavsar.jpl.nasa.gov
Rg: 1.67m

Az: 0.6m
Scene 1 3 or 12 2 or 4 2360 ˆ 600 px

[Rg, Az] =

[2891, 28891]

Scene 2 3 or 12 2 2300 ˆ 600 px
[Rg, Az] =

[3236,25601]

Snjoaq_14511 Scene 3 3 17 2300 ˆ 600 px
[Rg, Az] =

[3236,25601]

Table 3.1. Description of SAR data
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(a) Scene at t1

(b) Scene at t2
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(c) Scene at t3

(d) Scene at t4

Figure 3.2. UAVSAR dataset used in this study for Scene 1. Four dates

are available between April 23, 2009, and May 15, 2011. For a color
version of this figure, see www.iste.co.uk/atto/change1.zip
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(a) Scene at t1

(b) Scene at t2

Figure 3.3. UAVSAR dataset used in this study for Scene 2. Two dates are

available between April 23, 2009, and May 15, 2011. For a color version
of this figure, see www.iste.co.uk/atto/change1.zip
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Figure 3.4. UAVSAR dataset used in this study for Scene 3
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(a) Scene 1

(b) Scene 2

(c) Scene 3

Figure 3.5. Ground truth for Scenes 1, 2 and 3. For a color
version of this figure, see www.iste.co.uk/atto/change1.zip
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3.3. Statistical modeling of SAR images

3.3.1. The data

Denote by W “ tX1, . . . ,XT u a collection of T mutually independent groups

of p-dimensional i.i.d complex vectors: Xt “ rxt
1, . . . ,x

t
N s P CpˆN . With regard

to the single look complex (SLC) SAR images, these sets correspond to the local

observations in a spatially sliding windows as illustrated in Figure 3.6. The subscript

k corresponds to a spatial index, while the superscript t corresponds to a time index.

p

t “ 1
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1
1 x
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2 x
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Figure 3.6. Illustration of the sliding windows (in gray) approach (p “ 3, N “ 9).

The central pixel (xt

5) corresponds to the test pixel

3.3.2. Gaussian model

The centered complex Gaussian distribution is the most encountered one in the

SAR literature, notably for modeling polarimetric images. Indeed, since each pixel

consists of the coherent sum of the contribution of many scatterers, it is expected that,

thanks to the central limit theorem, the Gaussian model is not too far from the actual

empirical distribution. A random vector x P Cp is said to be distributed along the

complex Gaussian distribution (which we denote x „ CN ) if its probability density

function (p.d.f) is:

pCNx px;Σq “
1

πp
|Σ|

ep ´ xH Σ´1 xq [3.1]

When we have a dataset txkukPr1,Ns of i.i.d. data, the maximum likelihood

estimator (MLE) of the covariancematrix is the well-known sample covariancematrix

estimator (SCM):

Σ̂ “

1

N

N
ÿ

k“1

xkx
H
k [3.2]
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This estimate matrix obtained through data averaging is assumed to be Wishart

distributed as a consequence. In our time-series configuration, the statistical model for

the pixels on a sliding window is:

xt
k „ CN p0p,Σtq [3.3]

3.3.3. Non-Gaussian modeling

While the Gaussian distribution is popular, it fails to accurately describe the

heterogeneity observed in very high-resolution images as described in Greco and Gini

(2007), Gao (2010) and Ollila et al. (2012b). Indeed, in those images, the amount of

scatterers in each pixel has been greatly reduced with regard to low-resolution images.

To better describe the observed distribution of data, other models have been

considered. For example, the K-distribution has been considered in Yueh et al. (1989)

and Muller (1994), the Weibull distribution in Bucciarelli et al. (1995) or inverse

generalized Gaussian distribution in Freitas et al. (2005). These various models

belong to the family of complex elliptical symmetric (CES) distributions, which

generalize them as discussed in Ollila et al. (2012a), which is a model depending

on a density generator function g : R` Ñ R` that satisfies the condition mp,g “
ş

R`
tp´1gptq dt ă 8 and a positive definite matrix Ξ P S

p
H
: a random vector x P Cp

follows a complex elliptical distribution (denoted x „ CEr0psrgsrΞs) if its p.d.f is the

following:

pCEx px;Ξ, gq “ Cp,g |Ξ|
´1

g
`

xH Ξ´1 x
˘

, [3.4]

where Cp,g is a normalization constraint ensuring that
ş

Cp p
CE
x px;Ξ, gqdx “ 1. The

MLE depends on the function g. For example, the t-distribution is also a particular

case of the CES family, and in this case, g is equal to:

gptq “

ˆ

1`
2 t

d

˙

´p2p`dq{2

, [3.5]

where d is the degree of freedom of the distribution. For this distribution and when

we have a dataset txkukPr1,Ns of i.i.d. data, the MLE of the covariance matrix is the

result of the following fixed-point equation:

Σ̂student “
d` p

N

N
ÿ

k“1

xk x
H
k

d` xH
k Σ̂´1

student xk

[3.6]

Another representation of those distributions can be found through the compound

Gaussian model, sometimes referred as product model. In this case, a random vector

x follows a complex compound Gaussian (CCG) distribution if:

x “
?

τ z, [3.7]
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where z „ CN p0p,Σq, called the speckle, and τ , called the texture, follow a

distribution probability on R`. This quantity is often assumed to be deterministic in

order to generalize the Gaussian distribution without having to consider a model on

the texture. For this distribution and when we have a dataset txkukPr1,Ns of i.i.d. data,

the MLE of the covariance matrix is the result of the following fixed-point equation:

Σ̂tyl “
p

N

N
ÿ

k“1

xk x
H
k

xH
k Σ̂´1

tyl xk

[3.8]

In our time-series configuration, the statistical model for the pixels in a sliding

window is written as:

xt
k „

b

τ tk z
t
k, [3.9]

where τ tk P R
` is deterministic and ztk „ CN p0p,Σtq.

The elliptical and CCG distributions are probability models in the scope of the

robust statistical literature initiated by works such as Yohai (1974), Maronna (1976)

and Martin and Pierre (2000). More details can be found in the books Maronna et al.

(2006) and Zoubir et al. (2018). Following their definition, a method is said to be

robust, in this chapter’s context, when its statistical properties are independent of the

density generator function in the elliptical case or independent of the set of texture

parameters for the deterministic CCG case.

Using these various models, we will describe, hereafter, various dissimilarity

measures for those models, which can be used for change detection.

3.4. Dissimilarity measures

3.4.1. Problem formulation

Under a parametric approach, CD can be achieved by deciding between the two

following alternative hypotheses:
"

H0 : θ1 “ . . . “ θT “ θ0 pno changeq,

H1 : Dpt, t1q, θt ‰ θt1 pchangeq
, [3.10]

where θ corresponds to the parameters of the distribution used as a model.

In order to decide, a dissimilarity measure between the data over time is needed. It

can be seen as a function, also called statistic:

Λ̂ :
C

pˆNˆT
ÝÑ R

W ÝÑ Λ̂pWq,

such that Λ̂pWq is high when H1 is true and low otherwise.
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An interesting property of such a function is the constant false alarm rate (CFAR)

property. This property is valid when the distribution of the statistic under H0

hypothesis is not a function of the parameters of the problem. This allows selecting

a threshold value for the detection which is directly linked to the probability of false

alarm. The threshold is often obtained by deriving the distribution of the statistic or

can be obtained by Monte-Carlo simulations when it is not available.

3.4.2. Hypothesis testing statistics

The first kind of dissimilarity measures comes from the statistical literature on

hypothesis testing. These functions, also known as test statistics, are obtained by

adapting semi-closed formulas to the problem of detection undertaken. Many of such

formulas have been designed and studied in statistical literature giving an insight into

the expected distribution of the resulting statistic under null hypothesis. In some cases,

the resulting statistic from different techniques can yield statistically equivalent tests

as shown in Ciuonzo et al. (2017).

Among those possibles techniques, we recall here, under the problem formulation

at [3.10], the most well-known ones:

– Generalized likelihood ratio test (GLRT):

Λ̂ “

max
rθ1,...,θT s

pW1,T
pW1,T { H1; θ1, . . . , θT q

max
θ0

pW1,T
pW1,T { H0; θ0q

H1

ż

H0

λ. [3.11]

– Terell gradient statistic:

λgrad “
B log pW1,T

pW1,T {H1; θ1, . . . , θT q

Bθ
T

ˇ

ˇ

ˇ

ˇ

θ“θ̂0

pθ̂1 ´ θ̂0q

H1

ż

H0

λ. [3.12]

–Wald statistic:

λWald “ pθ̂1 ´ θ0q
T

´”

I´1
pθ̂1q

ı

θ

¯

´1

pθ̂1 ´ θ0q

H1

ż

H0

λ, [3.13]

where Ipθq is the Fisher information matrix of the problem of estimation under theH1

hypothesis.

3.4.2.1. Gaussian assumption

Under Gaussian assumption, the derivation of the GLRT has the following

expression:

Λ̂G “

ˇ

ˇ

ˇ
Σ̂SCM

0

ˇ

ˇ

ˇ

TN

T
ź

t“1

ˇ

ˇ

ˇ
Σ̂SCM

t

ˇ

ˇ

ˇ

N
, [3.14]
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where:

@t, Σ̂SCM

t “

1

N

N
ÿ

k“1

xt
kx

t
k

H
and Σ̂SCM

0 “

1

T

T
ÿ

t“1

Σ̂SCM

t . [3.15]

This statistic is well known in the literature, and its properties have been well

studied. Anderson (2003) has derived the distribution under the null hypothesis and

proposed an approximation as a function of χ2 distributions only depending on the

parameters p, T and N . Therefore, this statistic has the CFAR property.

Concerning the Terell gradient statistic, it has been shown in Ciuonzo et al. (2017)

that its form is statistically equivalent to the following reduced expression:

Λ̂t1 “

1

T

T
ÿ

t“1

Tr

«

ˆ

´

Σ̂SCM

0

¯

´1

Σ̂SCM

t

˙2
ff

. [3.16]

This statistic has the CFAR property and has a χ2 asymptotic distribution (when

N Ñ8).

Finally, the Wald statistic yields the following result:

Λ̂Wald “N

T
ÿ

t“2

Tr

«

ˆ

Ip ´ Σ̂SCM

1

´

Σ̂SCM

t

¯

´1
˙2
ff

´ q

˜

N

T
ÿ

t“1

´

Σ̂SCM

t

¯

´:

b pΣ̂SCM

t q

´1, vec

˜

T
ÿ

t“2

Υt

¸¸

,

[3.17]

where : is the transpose operator,

qpx,Σq “ xH Σ´1 x, [3.18]

and where

Υt “ N
´

pΣ̂SCM

t q

´1
´ pΣ̂SCM

t q

´1Σ̂SCM

1 pΣ̂SCM

t q

´1

¯

. [3.19]

This statistic has the CFAR property and has a χ2 asymptotic distribution (when

N Ñ 8). It is, however, computationally more complex than the previous ones due

to the Kroenecker product.

3.4.2.2. Non-Gaussian assumption

Concerning non-Gaussian models, Mian et al. (2019a) have considered the

derivation of the GLRT using the compound Gaussian model with deterministic
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texture parameters:

Λ̂MT “

ˇ

ˇ

ˇ
Σ̂MT

0

ˇ

ˇ

ˇ

TN

T
ź

t“1

ˇ

ˇ

ˇ

Σ̂TE

Wt

ˇ

ˇ

ˇ

N

N
ź

k“1

˜

T
ÿ

t“1

q
´

Σ̂MT

0 ,xt
k

¯

¸Tp

T Tp

T
ź

t“1

´

q
´

Σ̂TE

Wt
,xt

k

¯¯p
, [3.20]

whereWt “ tx
t
k : 1 ď k ď Nu and Σ̂TE

Wt
is defined in [3.8] and

Σ̂MT

0 “

p

N

N
ÿ

k“1

T
ÿ

t“1

xt
k

`

xt
k

˘H

T
ÿ

t“1

q
´

Σ̂MT

0 ,xt
k

¯

, [3.21]

where qpΣ,xq is defined in [3.18].

This statistic has been shown to have better robustness to very heterogeneous data

for which the Gaussian model is very far. This comes, however, at a cost of complexity.

Indeed, there is a need to compute the solution of two fixed-point equations, which is

computationally expensive. The statistic has the CFAR property, but the distribution

under null hypothesis has not yet been derived.

Concerning the derivation of Terell gradient and Wald statistics under this

non-Gaussian model has not been considered yet and remains an open problem.

3.4.3. Information-theoretic measures

Information theory tools are based on another approach, which consists of

measuring quantities related to the information at disposition on the data. In order

to compare two distributions, distances can be computed. When a parametric model

is used, the distance is often dependent on the parameters of the two distributions

compared. Since in many applications the parameters are not known, estimates are

plugged into the distance function.

The Kullback–Leibler (KL) divergence is a popular measure between probability

density functions, encountered notably in SAR change detection problems (Inglada

and Mercier 2007). It is defined as:

d ppX, pYq “ E

„

log

"

pXpxq

pYpxq

*

“

ż

Cp

pXpxq log

"

pXpxq

pYpxq

*

dx [3.22]
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For two zero-mean multivariate Gaussian distributions, it leads to:

dKL pΣ1,Σ2q “ d ppX, pYq “

1

2

ˆ

Tr
`

Σ´1

1 Σ2

˘

` log

ˆ

|Σ1|

|Σ2|

˙˙

[3.23]

For the Gaussian case, a statistical test can be defined through the symmetrized

version of the divergence (J-Divergence) between the two covariancematrix estimates:

Λ̂KL “

1

2

´

dKL

´

Σ̂SCM

0 , Σ̂SCM

1

¯

` dKL

´

Σ̂SCM

1 , Σ̂SCM

0

¯¯

, [3.24]

Frery et al. (2014) have shown that this statistics is asymptotically distributed as a χ2

distribution.

Other measures include Renyi entropy or Bhattacharya distance, which have been

shown to behave similarly in Frery et al. (2014). They will thus be omitted in this

chapter. An alternative complex Hotelling–Lawley statistic has been proposed by

Akbari et al. (2016) for the case T “ 2. The distance used is given by:

Λ̂HTL “ Tr
´

pΣ̂SCM

0 q

´1 Σ̂SCM

1

¯

. [3.25]

The authors also derived the distribution under null hypothesis and showed that it

can be approximated by a Fisher–Snedecor distribution. The study showed a potential

improvement of detection rate compared to the GLRT statistic.

For non-Gaussianmodel, Liu et al. (2014) proposed a measure for T “ 2, based on

the principle of mutual information. The proposed approach assumes a scenario where

the pixels have been averaged on a small window of size L to reduce the speckle noise

before performing the change detection (multi-look scenario). The distance, based on

a gamma model on the texture parameters, is a generalization of the one proposed in

Beaulieu and Touzi (2004):

Λ̂MLL “ MLLpW1q `MLLpW2q ´MLLpW12q, [3.26]

withW12 “ W1 YW2 and where

MLLpWq “ N
ν ` pL

2
plogpLνq ´ logpµqq ´N L log

ˇ

ˇΣTE

W

ˇ

ˇ

`

ν ´ pL

2

ÿ

xt
k
PW

log
”

Tr
´

`

ΣTE

W

˘

´1
xt
k x

t
k

H
¯ı

´N log |Γpνq|

`

ÿ

xt
k
PW

log

„

Kν´pL

ˆ

2

c

Tr
´

pΣTE

W
q

´1xt
k x

t
k

H
¯

Lν{µ

˙

,

[3.27]
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where Γp.q is the Gamma function, ΣTE
W
is defined in equation [3.8], Kνpzq is the

modified Bessel function of the second kind and pµ, νq are the parameters of a Gamma

distribution found by fitting the distribution of the texture parameters set

T “

 

τ̂ tk “ q
`

ΣTE

W ,xt
k

˘

{p : xt
k P W

(

. [3.28]

The method used has a high computational cost, since the test statistic relies on a

Bessel function as well as a fitting of a Gamma distribution.

3.4.4. Riemannian geometry distances

Riemannian geometry is an alternative concept that allows us to compare

distributions. Indeed, when the parameters of a distribution lie in a Riemannian

manifold (e.g. covariance matrices lie in Riemannian manifold of positive definite

matrices S
p
H
(Skovgaard 1984)), it is possible to define a metric, which can be related

to the Kullback–Leibler divergence. Consequently, distances between two probability

distributions, which take into account the geometry properties of the parameter space,

have been considered in the literature. Notably, for a Gaussian model, we have the

following distance (Smith 2005):

Λ̂RE “

›

›

›

›

log

ˆ

´

Σ̂SCM

1

¯

´

1

2

Σ̂SCM

2

´

Σ̂SCM

1

¯

´

1

2

˙
›

›

›

›

2

F

, [3.29]

where log is the logarithm of matrices, which for Σ P S
p
H
, having the eigenvalue

decompositionΣ “ UΛUH, is defined as follows:

logpΣq “ U log
d

pΛqUH, [3.30]

where log
d

is the pointwise logarithm.

For the elliptical case, a Riemannian CES distance can be obtained as well (Breloy

et al. 2019):

Λ̂RE “ α

p
ÿ

i“1

log2 λi ` β

˜

p
ÿ

i“1

log λi

¸2

, [3.31]

where λi is the i-th eigenvalue of
´

Σ̂MLE
1

¯

´1

Σ̂MLE
2 , Σ̂MLE

ǫPt0,1u
is the MLE of the

scatter matrix in CES case and α, β depend on the density generator function. For a

Student’s t distribution, we have:

α “

d` p

d ` p` 1
, β “ α´ 1, [3.32]

and Σ̂MLE
ǫ is defined in equation [3.6].
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The concept of Riemannian geometry has also been considered in Ratha et al.

(2017), where a methodology has been proposed for polarimetric SAR images based

on Kennaugh matrix decomposition. This distance, however, is not based on a

probability model and will be thus omitted in this chapter.

3.4.5. Optimal transport

Finally, a distance can be obtained through the concept of optimal transport,

which defines a distance dW p., .q depending on a cost to displace parts of a reference

distribution into a target distribution. Let pXp.q and pYp.q be two multivatiate

distributions. Assuming a quadratic cost, the optimal transport problem can be stated

as finding the joint distributions pX,Yp., .q to minimize:

d ppX, pYq :“ inf
pX,Yp.,.qě0

"

E
´

}X´Y}

2
¯

|

ż

x

pX,Ypx,yq dx “ pYpyq,

ż

y

pX,Ypx,yq dy “ pXpxq

*

. [3.33]

It has been shown in Gelbrich (1990) that this distance has a closed form for

Gaussian distributions, X „ CN p0,Σ1q, Y „ CN p0,Σ2q and E
“

XYH
‰

“ C.

In that case, E
`

}X ´Y}

2
˘

“ Tr pΣ1 `Σ2 ´ 2Cq and the problem remains to

solve:

d ppX, pYq “ min
C

"

Tr pΣ1 `Σ2 ´ 2Cq |

„

Σ1 C

CH Σ2



ě 0

*

, [3.34]

which leads toC “ Σ
´1{2

2

´

Σ
1{2

2
Σ1 Σ

1{2

2

¯1{2

Σ
1{2

2
. The final result leads to:

dW pΣ1,Σ2q “ d ppX, pYq ,

“ Tr

ˆ

Σ1 `Σ2 ´ 2
´

Σ
1{2

2
Σ1 Σ

1{2

2

¯1{2
˙

. [3.35]

The corresponding optimal transport problem for two Gaussian distributions can

be derived through a distance between two covariance matrices. Plugging estimates

of the two covariance matrices leads to define the associated Wasserstein statistic for

Gaussian hypothesis:

Λ̂WG “ dW

´

Σ̂SCM

1 , Σ̂SCM

2

¯

. [3.36]
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Statistic Reference Model Equation T ą 2 CFAR Asymptotic null distribution

Λ̂G (Conradsen et al. 2001) Gaussian [3.14] χ2 (asymptotic)

Λ̂t1
(Ciuonzo et al. 2017) Gaussian [3.16] χ2 (asymptotic)

Λ̂Wald (Ciuonzo et al. 2017) Gaussian [3.17] χ2 (asymptotic)

Λ̂HTL (Akbari et al. 2016) Gaussian [3.25] ˆ Fisher–Snedecor (approximation)

Λ̂MT (Mian et al. 2019a) Deterministic CCG [3.20] ˆ

Λ̂KL (Frery et al. 2014) Gaussian [3.24] ˆ χ2 (asymptotic)

Λ̂MLL (Liu et al. 2014) Compound Gaussian [3.26] ˆ ˆ ˆ

Λ̂RG (Smith 2005) Gaussian [3.29] ˆ ˆ ˆ

Λ̂RE (Breloy et al. 2019) Student’s t [3.31] ˆ ˆ ˆ

Λ̂WG (Ghaffari and Walker 2018) Gaussian [3.36] ˆ ˆ ˆ

Λ̂WE (Ghaffari and Walker 2018) Elliptical [3.37] ˆ ˆ ˆ

Table 3.2. Summary of statistics with their respective properties
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Thanks to this result, we can define a statistic elliptical case by plugging estimates

of the covariance matrices. A Wasserstein statistic in the elliptical can be obtained by

taking:

Λ̂WE “ dW

´

τ̂1 Σ̂
TE

1 , τ̂2 Σ̂
TE

2

¯

, [3.37]

where Σ̂TE
ǫPt0,1u

is defined in equation [3.21] and τ̂ǫPt0,1u “
p

N

N
ÿ

k“1

q
´

Σ̂TE

ǫ ,xǫ
k

¯

.

3.4.6. Summary

A summary of the different statistics with their respective properties can be found

in Table 3.2.

3.4.7. Results of change detectors on the UAVSAR dataset

We recall that the dataset and the used scenes are described in section 3.2. For

Scene 1, we only use two dates (the first and fourth images) like for Scene 2. All the

dates of Scene 3 are considered in the tests.

The ROC (Receiver Operating Characteristic) for all statistics and the three scenes

are presented in Figure 3.7. A transcription of the detection performance at PFA “

0.01 is also given in Table 3.3.

The first observation that can be made is that Λ̂MLL generally have poorer

performance of detection than the other statistics. This is mostly explained by the

fact that it has been developed for a scenario where the data is denoised through an

averaging before change detection, which was not the case here. Thus, the statistic

yields poorer detection performance than most of the other statistics.

The statistics obtained through the Wasserstein distance, Λ̂WG and Λ̂WE , appear

to not work well for this CD problem since the performance of detection compared to

others distance is lower, especially for Scene 2.

Statistic Λ̂G Λ̂t1
Λ̂Wald Λ̂HTL Λ̂MT Λ̂KL Λ̂MLL Λ̂RG Λ̂RE Λ̂WG Λ̂WE

Scene 1 0.41 0.41 0.35 0.43 0.41 0.40 0.18 0.41 0.39 0.12 0.36

Scene 2 0.33 0.30 0.27 0.32 0.39 0.32 0.11 0.33 0.29 0.19 0.19

Scene 3 0.90 0.75 0.62 0.95

Table 3.3. Probability of detection at a false alarm rate of 1%
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Figure 3.7. ROC plots for a window size of 5ˆ 5 for the three scenes.
Top: Scene 1; middle: Scene 2; bottom: Scene 3. For a color version

of this figure, see www.iste.co.uk/atto/change1.zip

For the case T “ 2, considering the Gaussian-derived statistics Λ̂G, Λ̂t1 , Λ̂KL ,

Λ̂HTL and Λ̂RG , it is difficult to discern a best statistic since depending on the scene,

their relative performance vary. When the number of images is high, Λ̂Wald appears

to be lower in all cases, but the performance of detection is not far. For T ą 2, Λ̂G

seems to have better performance than its counterpart, but no conclusion can be made

since only one set of data with T ą 2 was available.
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Λ̂G Λ̂t1
Λ̂Wald Λ̂HTL Λ̂MT Λ̂KL Λ̂MLL Λ̂RG Λ̂RE Λ̂WG Λ̂WE

0.001 0.001 0.003 0.001 0.004 0.001 0.006 0.011 0.007 0.002 0.007

Table 3.4. Time consumption in seconds

Finally, concerning robust statistics Λ̂MT has the overall best performance for all

scenes. In Scene 1, it has slightly lower performance than Λ̂HTL, but on the other

scenes (especially Scene 3), the performance of detection is greatly improved. The

gain of this statistic compared to the Gaussian one is explained by the heterogeneity

of the images at the transition between objects. As an example, the outputs of both

Λ̂G and Λ̂MT are presented in Figure 3.8. For this data, the Gaussian-derived statistic,

which does not take into account the heterogeneity, yields a high value of the statistic

at the transition between the fields while the CCG statistic does not, which constitutes

a big improvement concerning false alarms. The natural Student’s t statistic Λ̂WE does

not have good performance of detection, which is explained by a mismatch in the

degrees of freedom chosen to model the distribution of the data. Moreover, Student’s

t model can be inaccurate to model the actual data. In those regards, Λ̂MT is able to

achieve better performance without relying on a specific elliptical model and has thus

a better robustness to mismatch scenarios.

To compare the attractiveness of the different statistics described in this section

with regard to computational complexity, we consider an experimental Monte-Carlo

analysis on synthetic Gaussian data.

A set of dataW is generated with parameter values p “ 10, N “ 25 and T “ 2.

The Gaussian data is generated with a covariance matrix pΣqij “ 0.5|i´j| and 4, 000
Monte-Carlo trials have been considered. For statistics involving fixed-point equation,

we fixed the number of iterations to 15 and we choose L “ 1 (Single Look data).
Finally, the simulation has been done on a 2.50 GHz processor in Python 3.7. The

mean execution times are provided in Table 3.4.

Several observations can be made:

– most of the Gaussian-derived statistics have similar time consumption since the

statistic are based on the computation of the SCM, which is less expensive than a

fixed-point estimation. Wald statistic is more expensive than the Gaussian GLRT and

t1 statistics due to the inverse of a Kronecker product, which is more expensive

than a simple inverse. Λ̂RG has the highest time consumption, even compared to

non-Gaussian methodologies, due to the fact that it requires to compute the square

root of matrices, which can take a lot of time depending on the implementation (the

one used corresponds to the Scipy implementation, which can be improvedwith regard

to complexity);
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– concerning non-Gaussian statistics, the time consumption is generally higher

than Gaussian methodologies due to the fixed-point estimation. The best methodology

with regard to time consumption is Λ̂MT since it requires fewer operations than the

others. Moreover, some solutions based on stochastic Riemannian gradient (Zhou

and Said 2019) should allow us to reduce the computational cost of the covariance

estimator used in Λ̂MT.
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Figure 3.8. Output of Λ̂G (top) and Λ̂MT (bottom) on Scene 3. The major
difference between the two statistics is highlighted by red arrows. For a color

version of this figure, see www.iste.co.uk/atto/change1.zip
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3.5. Change detection based on structured covariances

In Mian et al. (2017), we have shown that the performance of the detectors

(Gaussian and non-Gaussian) improves with the increase of the diversity (here the

spectro-angular diversity obtained with the method proposed in Mian et al. (2019b))

and so on p. When p is increased, the number of data to estimate the covariancematrix

has to be increased too. The relationN “ 2p (obtained in array processing (Reed et al.

1974)) is often used to choose this number. But in our configuration, it can be difficult

to handle with large N . First, the hypothesis of i.i.d. data to estimate the covariance

is not fulfilled if N is too large, and second, we loose resolution when N increases

(because of the method used in Mian et al. (2019b) to highlight the spectro-angular

diversity). Therefore, if we want to choose a large p to obtain good performance, we

have to find a method to keep a value of N reasonable.

It exists two kinds of approaches to reduce the number of N needed to the

estimation of the covariance matrix: the first one is to shrink the covariance towards

to the identity matrix (Ledoit and Wolf 2004; Ollila and Tyler 2014; Pascal et al.

2014), and the second one is to resort on the inherent structure of data. A common

structure for RADAR data is that they lie in a low-dimensional subspace. In this case,

the covariance matrix has a low-rank (LR) structure, i.e. it can be written as the sum

of an LR matrix and a diagonal matrix (where we will assume that all eigenvalues are

equal).

We illustrate this property on the UAVSAR data already tested in the previous

sections. In Figure 3.9, we have computed and plotted the mean of the eigenvalues

of the selected area of Scene 2. In this simulation, the data size is equal to p “

12 with four spectro-angular diversities and three polarimetric channels. We note
that the eigenvalues decrease significantly, and we conclude that the data lie in a

low-dimensional subspace. In the following, the rank R is assumed to be known or

pre-estimated (either globally or locally) by using rank estimation methods from the

literature, such as information theory-based ones (Stoica and Selen 2004).

The detectors derived in the previous sections assume unstructured covariance

matrices. We propose in this section to derive Gaussian and non-Gaussian detectors

when the covariance matrix of the data has an LR structure. We only focus on the

GLRT approach even it is of course possible to extend the other approaches presented

in the previous section 3.4.

3.5.1. Low-rank Gaussian change detector

We recall that the dataset txku, where xk „ CN p0p,Σq, has the following

likelihood function

LG

`

txku
N
k“1 |Σ

˘

9

K
ź

k“1

|Σ|
´1

ep ´ xH
k Σ´1 xkq [3.38]
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(a) UAVSAR data (Courtesy NASA/JPL-Caltech). Selection of the area on scene 2.
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(b) Spectrum of UAVSAR data (wavelets+polarimetry). p “ 12.

Figure 3.9. Low-rank properties of UAVSAR data with polarimetric
and spectro-angular diversity. For a color version of this

figure, see www.iste.co.uk/atto/change1.zip

SinceΣ has an LR structure, it is written as follows:

Σ “ ΣR ` σ2 I [3.39]

where ΣR belongs to the set of Hermitian positive semi-definite matrices of rank

R, denoted H`p,R. A Gaussian GLRT that accounts for this prior knowledge denoted
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Λ̂LRG (LRG: low-rank Gaussian) can be formulated according to [3.10] with the

following distribution parameters:

Model: xt
k „ CN

`

0,Σt
R ` σ2

t I
˘

Likelihood in [3.38]

Param.: H0 : θ0 “

"

Σ0
R, σ

2
t

(

H1 : tθtu
T

t“1
“

"

Σt
R, σ

2
t

(T

t“1

[3.40]

The corresponding detector when we assume that the white Gaussian noise level

is known has been derived in Abdallah et al. (2019). To derive the corresponding

GLRT, we have θt “

"

Σt
R, σ

2
t

(

& Φt “ ∅. Finally, we obtain for the expression

of Λ̂LRG:

Λ̂LRG “

L

ˆ

!

txt
ku

N

k“1

)T

t“1

{ H1; TR

!

Σ̂1

)

, . . . , TR

!

Σ̂T

)

˙

L

ˆ

!

txt
ku

N

k“1

)T

t“1

{ H0; TR

!

Σ̂0

)

˙

H1

ż

H0

λ. [3.41]

where Σ̂t “
1

N

N
ÿ

k“1

xt
k

`

xt
k

˘H
. FromΣ

EVD
“ Udiag pdq UH , we obtain TR tΣu:

TR tΣu “Udiag
´

d̃
¯

UH

where d̃ “
“

d1, . . . , dR, σ̂
2
t , . . . , σ̂

2
t

‰

and σ̂2
t “

p
ÿ

r“R`1

dr

p´R
.

In the next section, we make the same derivation when the data follow the

compound Gaussian model.

3.5.2. Low-rank compound Gaussian change detector

We recall that the dataset txku, where xk | τk „ CN p0p, τkΣq, has the following

likelihood function

LCG

´

txku
N

k“1
|τk Σ

¯

9

K
ź

k“1

|τk Σ|
´1

ep ´ xH
k pτk Σq

´1 xkq [3.42]

where like for the Gaussian version,Σ “ ΣR ` σ2 I.
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The corresponding GLRT for CD, denoted Λ̂LRCG (LRCG: low-rank compound

Gaussian), corresponds to equation [3.10] with the following distribution/parameters:

Model: xt
k „ CN

`

0p, τ
t
k

`

Σt
R ` σ2

t I
˘˘

Likelihood in [3.42]

Param.: H0 : θ0 “

!

Σ0
R, σ

2
0 ,

#

τ0k
(N

k“1

)

H1 : tθtu
T

t“1
“

!

Σt
R, σ

2
t , tτ

t
ku

N

k“1

)T

t“1

[3.43]

Here, the test accounts for a possible change of both the covariance matrix and the

textures between acquisitions, as it was shown to be the most relevant approach for

SAR-ITS in the previous section 3.4 and in Mian et al. (2019a).

Evaluating ΛLRCG according to the generic equation [3.11] requires us to

compute:

Λ̂LRCG “

L
H1

LRCG

ˆ

!

txt
ku

N

k“1

)T

t“1

| θ̂
H1

LRCG

˙

L
H0

LRCG

ˆ

!

txt
ku

N

k“1

)T

t“1

| θ̂
H0

LRCG

˙ , [3.44]

where LH0

LRCG and L
H1

LRCG are the likelihood (derived from equation [3.42]) underH0

and H1, respectively, and where

θ̂
H0

LRCG “

!

Σ̂0
R, σ̂

2
0 ,

#

τ̂0k
(N

k“1

)

,

θ̂
H1

LRCG “

!

Σ̂t
R, σ̂

2
t , tτ̂

t
ku

N
k“1

)T

t“1

[3.45]

are the maximum likelihood estimators under H0 and H1, respectively. As for the

Gaussian version, we do not have any closed form for this CD.

In the following, we present the method to obtain θ̂
H1

LRCG. The approach to have

θ̂
H0

LRCG are very close and only the differences will be given.

3.5.2.1. Maximum likelihood under H1

Under H1, the likelihood is separable in t. For a fixed t, the maximum likelihood

estimation of the unknown parameters
!

Σ̂t
R, σ̂

2
t , tτ̂

t
ku

N
k“1

)

consists of solving the

problem

maximize
t

τ t
k
,Σt

ku
N

k“1
,Σt

R
,σ2

t

N
ÿ

k“1

log
`

Lt
H1

`

xt
k |Σ

t
k

˘˘

subject to Σt
k “ τ tk

`

Σt
R ` σ2

t I
˘

Σt
R ě 0, and rankpΣt

Rq “ R

σ2
t ą 0, and τ tk ą 0,@k

[3.46]
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Algorithm 3.1.–MLE underH1 and fixed t

Input: R, t,
 

x
t

k

(

N

k“1

while (convergence criterion not met) do
Update textures with equation [3.47] Update covariance matrix parameters with equations

[3.49]–[3.50]

return Σ̂
t

R
, σ̂2

t
,
 

τ̂ t
k

(

N

k“1

where Lt
H1

pxt
k|Σkq reads directly from equation [3.42]. The solution to this problem

cannot be obtained in closed form, but the following sections derive practical

block-coordinate descent algorithm in order to evaluate it. The algorithm is summed

up in the box of Algorithm 3.1.

– Update of the textures (H1): Assuming a fixed covariance matrixΣ
t
R `σ2

t I, the

maximum likelihood estimator of the texture parameters is obtained in closed form

(Pascal et al. 2008), with

τ̂ tk “

1

p

`

xt
k

˘H `

Σt
R ` σ2

t I
˘

´1
xt
k [3.47]

– Update of the covariance matrix parameters (H1): Assuming fixed textures

tτ tku
N
k“1
, equation [3.46] can be re-expressed as:

minimize
Σt,Σ

t
R
,σ2

t

log |Σt| ` Tr
!

S̃t Σ
´1

t

)

subject to Σt “ Σt
R ` σ2

t I

Σt
R ě 0, and rank pΣt

Rq “ R

σ2
t ą 0

[3.48]

with S̃t “

1

N

N
ÿ

k“1

xt
k pxt

kq
H

τ tk
. The solution is given in Tipping and Bishop (1999) and

leads to the update

Σt “ Udiag
´

d̃
¯

UH ∆
“ TR

´

S̃t

¯

[3.49]

defined through the operator TR, with

S̃t
EVD
“ Udiag pdq UH

d “ rd1, . . . , dR, dR`1, . . . , dps

d̃ “

“

d1, . . . , dR, σ̂
2
t , . . . , σ̂

2
t

‰

σ̂2
t “

1

p´R

p
ÿ

r“R`1

dr.

[3.50]
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Algorithm 3.2.–MLE underH0

Input: R,
!

!

x
t

k

(

N

k“1

)

T

t“1

while (convergence criterion not met) do
Update textures with equation [3.52] Update covariance matrix parameters with equations

[3.49]–[3.50] applied to equation [3.53]

return Σ̂
0

R
, σ̂2

0
,
!

τ̂0
k

(

N

k“1

3.5.2.2. Maximum likelihood under H0

maximize
t

τ0

k
,Σ0

ku
N

k“1
,Σ0

R
,σ2

0

T
ÿ

t“1

N
ÿ

k“1

log
`

L
t
H0

`

xt
k | Σ0

k

˘˘

subject to Σ0

k “ τ0k
`

Σ0
R ` σ2

0 I
˘

Σ0
R ě 0, and rank

`

Σ0
R

˘

“ R

σ2
0 ą 0, and τ0k ą 0,@k

[3.51]

This problem can be solved as the one in equation [3.46], with some modifications

due to the likelihood function. The differences are detailed below and summed up in

the box of Algorithm 3.2.

– Update of the textures (H0): Assuming a fixed covariance matrix Σ
0

“ Σ0
R `

σ2
0 I, the maximum likelihood estimator of the texture parameters is obtained in closed

form (Mian et al. 2019a), with

τ̂0k “

1

T p

T
ÿ

t“1

`

xt
k

˘H `

Σ0

R ` σ2

0 I
˘

´1
xt
k [3.52]

– Update of the covariance matrix parameters (H0): Assuming fixed textures, the

update problem can be reformulated as in [3.48], using

S̃0 “

1

N T

T
ÿ

t“1

N
ÿ

k“1

xt
k pxt

kq

H

τ0k
[3.53]

instead of S̃t. The solution is then obtained as in equations [3.49] and [3.50], and

yieldsΣ0

∆
“ TRpS̃0q.

3.5.3. Results of low-rank change detectors on the UAVSAR dataset

We recall that the dataset and the used scenes are described in section 3.2. In this

experimentation, Scene 1 with four dates and Scene 2 are tested.
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Scene 1
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Figure 3.10. Comparison between four methods: Gaussian, low-rank Gaussian,
compound Gaussian (CG) and low-rank compound Gaussian (LRCG). p “ 12, rank
is fixed as 3, the window size is 7 ˆ 7 and σ2 is assumed unknown for both low-rank

models. For a color version of this figure, see www.iste.co.uk/atto/change1.zip
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The performance of the change detectors ΛLRG and ΛLRCG are tested on a SAR

ITS dataset and assessed with ROC curves (displaying the probability of detection

versus the false alarm rate). As a mean to assess the effectiveness of using the

LR structure, they are compared to the following detectors: i) the classic Gaussian

detector proposed in Conradsen et al. (2003) and Ciuonzo et al. (2017) and given

in [3.14], denoted Λ̂G; ii) the compound Gaussian detector proposed in Mian et al.

(2019a) and given in [3.20], denoted Λ̂CG.

The rankR is chosen according to Figure 3.9, which has displayed the eigenvalues

of the total sample covariance matrix. For this dataset, R “ 3 appears to be an

interesting value to separate signal from noise components. Notably, this rank gathers

81% of the total variance.

Figure 3.10 displays the ROC curves for the four detectors applied to Scenes 1

and 2. It assesses that the proposed method achieves the best performance in terms of

probability of detection versus false alarm rate.
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Figure 3.11. Comparison for Scene 1 of the LRCG (low-rank compound Gaussian)
for different rank values. p “ 12, the window size fixed at 7ˆ 7 and σ2 assumed

unknown. For a color version of this figure, see www.iste.co.uk/atto/change1.zip
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Figure 3.11 displays the ROC curves of ΛLRCG on Scene 1 for three different

values of rank R. It is interesting to note that these curves do not vary significantly

with respect to this parameter. Therefore, we can expect that a slight error in the rank

estimation will not lead to a significant drop in CD performance.

3.6. Conclusion

The local covariance matrix of pixel patches appears to be relevant feature to

analyze multivariate image time series (especially when dealing with SAR images). In

this scope, this chapter presented an overview of covariance-based change detection

algorithms.

Most of the standard methods were initially driven from the Gaussian distribution

assumption and can be divided into two groups. The first one consists of two-step

approaches, where plug-in estimates of the local covariance matrices are used to

evaluate a distance, assessing for the dissimilarity (i.e. change) between the patches.

Multiple theoretical frameworks motivated the use of various matrix distances (each

with their own merits), notably information theory, Riemannian geometry and

optimal transport. The second approach consists of one-step procedures, based on

the derivation of a test statistic suited to the binary hypothesis test (“change” or “no

change” in the local covariance matrix). The most common statistic for this problem

is the GLRT, but many other exist, such as the t1 and the Wald statistics.

When dealing with high-resolution SAR images, it is well known that the Gaussian

assumption is no longer valid. Conversely, the compound Gaussian modeling was

shown to be more suited to reflect the empirical distribution of the data. This family of

distributions notably drove robust covariance estimation methods, leading to various

matrix estimates (notably, M -estimators) that can be used in plug-in approaches.

Moreover, compound Gaussian distributions can serve as a basis to derive robust

test statistics such as the GLRT. Empirical experiments were conducted on various

UAVSAR datasets, which illustrated the practical interest of the compound Gaussian

modeling. However, it is to be noted that the gain in detection performance is obtained

at the cost of a slight increase in computational complexity.

In some cases, this spectro-angular diversity of the scatterers (obtained through

wavelet-transform of the polarimetric data) can be useful to enhance the change

detection performance. This transformation generally increases the size of the data

(p ą 3), which implies a need for larger patches in order to correctly estimate the
local covariance matrix. This dimensionality issue can be mitigated by exploiting

some structure exhibited by the data, such as a low-rank one observed in the

covariancematrix. This chapter concluded by presenting a generalization of the GLRT

approaches accounting for this structure and illustrating the interest of the approach.
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