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Abstract—Target detection embedded in a complex interfer-
ence background such as jamming or strong clutter is an
important problem in signal processing. Traditionally, statistical
adaptive detection processes are built from a binary hypothesis
test performing on a grid of steering vectors. This usually involves
the estimation of the noise-plus-interference covariance matrix
using i.i.d. samples assumed to be target-free. Moving from this
paradigm, we exploit the fact that the interference (clutter and/or
jammers) lies in a union of low-dimensional subspaces. Hence,
the matrix of concatenated samples can be modeled as a sum of
low-rank matrices (union of subspaces containing interferences)
plus a sparse matrix times a dictionary of steering-vectors (rep-
resenting the targets contribution). Recovering this factorization
from the observation matrix allows to build detection maps for
each sample. To perform such recovery, we propose a generalized
version of the robust subspace recovery via bi-sparsity pursuit
algorithm [1]. Experimental results on a real data set highlight
the interest of the approach.

I. INTRODUCTION

Adaptive detection of targets embedded in a complex envi-
ronment (strong clutter, jammers, etc.) is an important issue in
array processing. Following the classical statistical paradigm,
the detection problem can be formulated as a binary hypothesis
test (target present or not), with unknown statistical parameters
(e.g., the disturbance covariance matrix). This topic has been
extensively studied in the signal processing literature for a
plethora of signal models and assumed noise distributions. For
example, detection in Gaussian context was investigated in
[2-5]. Generalizations to the complex elliptically symmetric
distributions was studied in [6-8]. In order to deal with low
sample support, the use of relaxations [9] and regularization
methods [10, 11] have been investigated and are still an active
topic of research.

Most of the aforementioned derivations have been built upon
the availability of a homogeneous secondary data set, i.e., inde-
pendent identically distributed (i.i.d.), and target-free samples,
that are used to learn the unknown statistical parameters. From
a practical point of view, the scanned environment can indeed
be assumed stationary for a given amount of observations.
However embedded systems encounter non-stationarity due to
varying environment and/or switching jammers. Dealing with
change points upstream is not a trivial task, which often leads
to heterogeneous secondary data sets. Moreover, the secondary
data are also potentially corrupted by outliers, such as targets.
Generally speaking, statistical-based methods may suffer from
an important performance loss if the assumed hypothesis are
not met, or in mismatched situations. While recent works have
robustness to heterogeneity/corruption issues in mind, it seems

A. Panahi, H. Krim
Electrical & Computer Engineering Department
North Carolina State University, Raleigh, NC, USA

interesting to explore new methodologies, such as geometrical
formulations, in order to alleviate this problem.

In this study we move from the statistical paradigm and ex-
plore the use of recent advances in robust union-of-subspaces
learning for detection purposes. This is motived by the fact that
the radar clutter (and/or jamming) interference is contained
in a subspace of low dimension compared to the size of the
data [12, 13]. Hence, the background of a piecewise stationary
environment can be modeled as a union-of-subspaces. Ad-
ditionally, the present sources can be modeled as a known
dictionary of steering-vectors times a sparse matrix of power
times phase-shifts coefficients. Recovering these two compo-
nents from a noisy observation (the sample set) is referred to
a robust subspace clustering problem [1, 14, 15].

Specifically, in order to tackle such recovery problem, we
propose to extend the algorithm introduced in [1], referred to
as robust subspace recovery via bi-sparsity pursuit algorithm
(RoSuRe), to account for the dictionary. Eventually, the con-
sidered methodology can be applied for two purposes: either
performing the detection itself by looking at the recovered
sparse error matrix (revealing present targets), and/or for
doing a first step clustering of homogeneous samples, that
can be then used in a traditional statistical detection process.
Note that this second application is not investigated here,
as this paper focuses on the single-step detection problem.
Eventually, this approach offers an interesting alternative due
to its simplicity and minimal parameterization: a simultaneous
estimation/detection process can be performed on the whole
data without specifying noise distribution, change points,
subspaces ranks, etc., avoiding then statistical-based methods
limitations.

The paper is organized as follows: Section II introduces the
data model. Section III presents a brief review of the statistical
detection paradigm. Section IV builds upon the data model to
recast detection as a robust subspace clustering problem, and
the RoSuRe algorithm is introduced to solve this problem.
Section V presents an application of the proposed method to
perform detection on a real data set.

II. DATA MODEL

A radar receiver consists in an array of () antenna elements
processing P pulses in a coherent processing interval which
acquires a set of samples. For presentation convenience in this
section, it is assumed that these samples are homogeneous,
i.e., that the disturbance is i.i.d. distributed. The extension to
the heterogeneous case is covered in section IV. Consider a



cluster of K samples {z;}reqi,x] € CM, these samples can
be modeled (see e.g., [9, 16]) as:

Zj = Vi + Cp + 1y, (D

where
e v} is the sum of target responses, expressed as:

I
vi =) ofd; )
i=1

where d;’s are known steering vectors (model of targets
we seek to detect) and I is the size of the dictionary. The
coefficients ¥ are power times phase-shifts coefficients. We
denote in matrix form:

Vk:[dl...d[}ak:DOék (3)

with a, = [a’f, .. ,o/}]T. Under the realistic assumption that
there are few targets to be detected, only I, < I entries in
vy, are non-zero (I, denotes the number of present targets in
the k’th sample). Therefore, the vectors a; are sparse.

e c; represents the interference, such as ground clutter (re-
sponse of the scanned environment) and/or jammers. Such
response are commonly considered in the literature as zero
mean with an assumed existing covariance matrix . and
following an given (possibly heavy-tailed [8]) distribution. In
this work, the underlying distribution will be considered un-
known and unspecified. A crucial point is that, from physical
considerations on the system [12, 13], we known that the
interference covariance matrix is of low rank R < M, i.e., its
singular value decomposition (SVD) reads

R
=Y cuuf )
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e Finally, n; represent the thermal noise, assumed to be white
Gaussian with a covariance matrix 1.

ITII. STATISTICAL DETECTION

A. Adaptive detection

In the classical detection paradigm, the following binary
hypothesis test is considered:

H()S Zg = Cg + g
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where zg is referred to as primary sample (tested cell) and
the z;, k € [1, K] are the secondary sample, assumed to be
ii.d. and target-free. Depending on the noise model, various
detection schemes and likelihood ratios can be envisioned.
From a robust and practical point of view, one can rely on the
adaptive coherence estimator (ACE) [17, 18], also referred to
as ANMF detector, which is defined as:

IpH 5172 0
P S 1pl[z £z 1y

for a given ”plug-in” estimator 3 of the noise-plus-
interference covariance matrix ¥ = ¥, + o021, computed from
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the secondary data {2z }rc[1, k] (excluding zo). The detection
test is performed on the grid of p = d; for ¢ € [1,1] (the
whole dictionary). To sum up, a classical 2-step detection
process is performed as follows:
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In order to improve the performance of this detection process,
the estimation of the interference plus noise covariance matrix
represents a crucial step. This problem drives a lot of current
research, notably for dealing with the problems of robustness
and low sample supports. Recent advances includes the use of
robust M -estimators [8], regularization methods [11] and the
introduction of prior information on the CM structure [19, 20].
In the considered context, the noise is known to be low-rank
structured, consequently, the estimator 3! in the detector
may be also replaced by I+ the orthogonal projection onto the
dominant eigensubspace of the interference complement. This
process is similar to interference cancellation, and is refered
to as "Low Rank” (LR) adaptive detection [9]. This process
is known to be asymptotically sub-optimal but to provide
better results at low sample support. Estimators IT+ can be
derived from the SVD of a covariance matrix estimator, or
from MLE/Bayesian approaches [16, 21].

B. Some limitations

The 2-step detection process described previously relies on
two major hypotheses. First, it is assumed that the secondary
data are homogeneous, meaning that we know a priori the
partition the whole sample set in clusters of i.i.d. secondary
data. Second, it is assumed that the tested sample has been
isolated from a set of target-free samples, used for the co-
variance learning step. The sample selection/partition can be
performed and checked using a more complex estimation
chain. Though, efficient in practice, this process may be
tedious and computationally expensive as it involves numerous
unknown parameters. Motivated by this issue, the present work
proposes a novel formulation and an algorithm that perform a
simultaneous estimation/detection process on the whole data
set without aforementioned limiting requirements.

IV. SUBSPACE CLUSTERING FOR DETECTION

A. Union of subspaces model for heterogeneous data

Now, consider that the whole collected sample set is
not necessarily homogeneous: the interference (clutter and/or
jammers) covariance and distribution may change at certain
points of the acquisition, with J unknown homogeneous sub-
partitions (or clusters). Denote the partitioned sample set {z; }
with j € [1,J]. k € [1,K;] and 37| K; = K. These
samples are drawn as

z, = v} +c) +nj (6)



that still follows the model described in section II, except that
the covariance matrix X7 of the interference in each cluster ,
reads

uull (7
1

M:c

5 —

r

with unspecified interference distribution (possibly different
in each cluster). Note that, as evoked previously, this model
is complex to deal with in a single step since the number
of partitions J, the different distributions of interferences,
their corresponding covariance matrices 37 and ranks R;,
the index of target-free samples, etc.) are unknown. From
a practical point of view, this model involves too many
parameters for deriving an efficient estimation procedure (such
as Expectation-Maximization) under the statistical paradigm.

Now, denote the orthogonal projector onto the j-th in-
terference subspace, of rank Rj;, as ITJ = 7{11 ufcuiH.
Consequently, we have a low rank representation satisfied by
the interference:

c) =Tlc], Vkel[l, K (8)
In a given class j € [1, J], with a sufficient number of samples
(actually K; > R; with probability one in our context), each
interference realization living in the hyperplane spanned by
ITJ can be obtained as a linear combination of the others:
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or in a matrix form
C;, = C;W;,, [WJ]LZ =0 (10)

where W is the matrix containing the coefficients ~J. This
formulation is also refereed to as a self-representative property
of the data. Denote the concatenation operator U and the
corresponding concatenation M x K of all the vectors defined
previously:

Z =iz},
N = u{n},

C =U{c]} =V{C;}, V =u{vi},
A =U{a;}, W=u{W,}.

we obtain the formulation of the data matrix as:

Z=V+C+N (11)

with relations

[W]“ =0
’ (12)
V = DA

{ C=CW,
To sum up on this formulation, most of the power of the
samples is contained in the union of unknown subspace
IT) and the matrix A is a sparse matrix that contain the
information about the present targets.

B. Robust subspace recovery for detection

From the point of view of a simultaneous estimation and
detection, the problem is to recover an union of low rank sub-
space (interferences) and a sparse matrix (targets responses)
from a noisy observation of the matrix DA + C. Recent
advances allow to infer such recovery, as this problem is
currently intensively investigated in the computer vision and
machine learning community [1, 14, 15]. In this work, we
consider the use of the algorithm from [1] (extended to include
a dictionary), that solves:

win W], + XA,
s.t Z=C+ DA (13)
C=CW, [W];=0

to perform a one step estimation/detection process. The opti-
mization is carried out using ADMM and Linearized-ADMM
(see [1] for implementation details). Eventually the obtained
sparse matrix A allows to build detection maps for each
samples, as non-zero coefficients of this matrix indicates the
presence of targets. This work mainly focuses on the single-
step detection problem, however, it is worth mentioning that
the obtained matrix W is (up to a sorting permutation) block
diagonal, which also allows to infer a partition of samples in
homogeneous clusters.

V. EXPERIMENTAL RESULTS
A. STAP for airborne radar

In this section, we present an experimental validation of
the proposed approach to perform radar detection. Space
Time Adaptive Processing (STAP) [22] is a technique used in
airborne radar to perform moving target detection. Typically,
the radar receiver consists in an array of () sensors processing
P pulses in a coherent processing interval. Following the
model in [22], the steering vector of a target d; is function
of the unknown angle of arrival (AoA) 6; and the unknown
target velocity v;. Hence a dictionary matrix D can be build
by concatenation, using a grid over these two parameters.
From the Brennan Rule [12] we known that the ground clutter
interference is contained in a low-dimensional subspace.

B. Experimental data

The data are provided by the French agency DGA/MI: the
clutter is real but the targets are synthetic. The number of
sensors is ) = 4 and the number of coherent pulses is P = 64,
the size of the data is then M = QP = 256. The center
frequency and the bandwidth are respectively equal to fy =
10GHz and the bandwidth B = 5M Hz. The radar celerity
is V' = 100m/s. The inter-element spacing is d = 0,3m and
the pulse repetition frequency is f. = 1kHz. The clutter rank,
computed from Brennan Rule [12], is R = 45 and the CNR
is evaluated around 20dB. For present targets, the Signal to
Clutter Ratio (SCR) is evaluated around —5dB. We consider
the following data matrix Z = W {z;} set built as follows:
7, is under H; with 10 targets at various speed/angle with
additional clutter plus noise. zs is under H; and contains a



target at (-4 m/s, 0 deg) with additional clutter plus noise.
z3 is under H; and contains a target at (4 m/s, 0 deg) with
additional clutter plus noise. Zy, for k € [4, K], are under H
with only clutter plus noise.

C. Compared methods

We compare the following detection process:

e The LR-ANMF detector (cf. section IILA.) using an es-
timator f[JéTy build from the SVD of regularized Tyler’s
estimator [23]. In order to provide a benchmark, I:IﬁTy is
computed using K = 400 target-free secondary data and
the regularization tuned to give the best visual results. The
detection is performed on each 3 first samples over a 256 x 256
grid of steering-vectors, resulting in 3 detection maps.

e The LR-ANMF detector using an estimator ﬂéc s build
from the SVD of the sample covariance matrix [9]. First,
I3, is computed using K = 120 target-free secondary
data. Second, f[gc M 1s computed with added 3 samples under
H, in the secondary data set (K = 123). The detection is
performed as previously, resulting in 3 detection maps.

e The proposed RoSuRe-Detector, that solves problem (13)
with the given data matrix Z (composed of the same K = 123
samples as the second detector) and the dictionary of 256 x 256
tested steering vectors. The the 3 first columns of recovered
matrix A (o, o and a3) are reshaped so that they can be
displayed as a detection map.

D. Results

Figure 1 displays the results of the considered detection
process for the 3 samples under H;. LR-ANMF with ﬂﬁTy
and a large sample set offers a benchmark for the ideal
case. The standard LR-ANMF build with ﬂéc Az using less
secondary data (a more realistic scenario) is still satisfactory as
target detection is possible, with an apparently low false alarm
rate on the clutter ridge. Third line show a robustness issue
of this process: performance of this detector are dramatically
impacted by presence of targets in the secondary data set.
Conversely, the proposed RoSuRe-Detector appears robust
to this effect, as it allows to perform an accurate one-step
detection on the whole sample set. Also note that targets are
recovered with low side-lobes effect, which is an interesting
property to distinguish them. The last line shows a limitation
of this process when the RoSuRe parameter A is not properly
selected. Here, the targets can still be detected, but the ground
response is also absorbed in the matrix A of the recovery,
leading to false alarms on the clutter ridge diagonal.

VI. CONCLUSIONS

The robust subspace clustering methodology has been in-
vestigated for the purpose of radar detection in complex
interference environments. The major interest of the approach
is that it allows to perform a simultaneous estimation/detection
on all samples in a single process, without assuming the
interference statistical properties (e.g., distribution or rank).
It also offers a way to process all available data at once, with-
out assumption on homogeneity of the interference, nor the

absence of targets in a training set. The acknowledged trade-
off is that this process performs a sparse regression rather as
a statistical detection test. Therefore, there is currently a lack
of theoretical characterization (distribution, CFAR properties,
etc.) so the algorithm has to be properly tuned to ensure, e.g., a
given probability of false alarm. However, experimental results
showed that this approach provides an interesting perspective.
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Fig. 1. From top to bottom: LR-ANMF detection maps for I RTy and K = 400 target-free samples. LR-ANMF detection maps for f[sc M and K =120
target-free samples. LR-ANMF detection maps for ITgr7, and K = 120 target-free samples plus 3 samples under H;. RoSuRe-Detector using the same
K = 123 samples and for two different coefficients v (two lines).



