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ABSTRACT

In the context of a disturbance composed of a Low Rank (LR)

clutter plus a white Gaussian noise, the corresponding LR fil-

ters used to detect a target embedded in this disturbance needs

less training vectors than classical methods to reach equiva-

lent performance. Unlike the classical one which is based

on covariance matrix of the noise, the LR filter is based on

the clutter subspace projector. In this paper, we propose a

new estimator of the clutter subspace projector for a distur-

bance composed of a LR Spherically Invariant Random Vec-

tors (SIRV) plus a zero mean white Gaussian noise that does

not require prior information on the SIRV’s texture. Numeri-

cal simulations validate the introduced estimator, and its per-

formance and robustness are tested on a Space Time Adaptive

Processing (STAP) simulation.

Index Terms— Covariance Matrix and Projector esti-

mation, Maximum Likelihood Estimator, Low-Rank clutter,

SIRV, STAP filter.

1. INTRODUCTION

In array processing, such as STAP Radar [1], the optimal filter

in terms of Signal to Noise Ratio (SNR) is composed by the

inverse of the Covariance Matrix (CM) of the noise and the

steering vector. In practice, the CM of the noise is unknown

and have to be primary estimated with a set of secondary data:

K realizations of the noise without any signal of interest. The

CM estimate is then used to process sub-optimal filtering.

The CM estimator typically used is the Sample Covari-

ance Matrix (SCM), which is the Maximum Likelihood Esti-

mator (MLE) of the CM in a Gaussian environment. In this

case, 2m (m is the size of the data) secondary data are needed

to ensure good performance of the sub-optimal filtering, i.e. a

3dB loss of the output SNR compared to optimal filtering [2].

When the the noise is composed of a low-rank (LR) clutter

plus a white Gaussian noise, the corresponding sub-optimal

filter is based on the projection of the received data onto the

orthogonal subspace of the clutter subspace [3]. Estimating

the clutter subspace projector requires 2r secondary data (r is

the clutter rank, and often r ≪ m) to reach equivalent per-

formance to the previous scheme [4]. Classically, this pro-

jector estimate is derived from the Singular Value Decom-

position (SVD) of the SCM. Nevertheless, the SCM is not

adapted for a non-Gaussian noise such as heterogeneous clut-

ter and developing filters/detectors on it may lead to poor per-

formance. In this paper, the clutter noise is modeled as SIRVs,

first introduced by [5], known for their good agreement to em-

pirical data sets [6]. A SIRV process is a compound Gaussian

mixture with a random power factor called the texture. The

clutter subspace estimate may be then derived from the SVD

of the Fixed-Point estimator (FPE), which is an approached

MLE of the CM for SIRV noise [7, 8]. However, the FPE is

not the MLE of the CM in the described context: LR-SIRV

plus white Gaussian noise. Moreover, it requiresK > m sec-

ondary data to be computed, which does not allow to take full

advantage of the LR assumption in the cases where 2r ≪ m.

In this paper, we propose to develop a direct estimator of

the clutter subspace projector via MLE. This approach had

been inspired by [9], where such an estimator had been given

under several hypothesis: the CM of the low-rank clutter is as-

sumed to have identical eigenvalues, and the Probability Den-

sity Function (PDF) of the texture is assumed known. In this

paper, we propose to relax the second assumption, and there-

fore introduce a new estimator of the clutter subspace projec-

tor with no prior information on the texture PDF in the context

of a LR SIRV clutter plus a white Gaussian noise. This new

estimator is compared with the classical one based on SCM

and those proposed in [9] to quantify the loss of performance

when prior information on texture is not taken into account.

The robustness of the proposed estimator is also studied on a

realistic simulation of STAP Radar, where eigenvalues of the

LR clutter are not identical.

The following convention is adopted: italic indicates a

scalar quantity, lower case boldface indicates a vector quan-

tity and upper case boldface a matrix. H denotes the trans-

pose conjugate operator. C N (a,R) is a complex Gaussian

vector of statistical mean a and of covariance matrix R. Im
is the m × m identity matrix. d̂ is the ML estimate of the

statistical parameter d. {wi}i=1,...,n denotes the set of n el-

ements wi with i = 1, ..., n and whose writing is sometimes

contracted in {wi} .



2. STATISTICAL MODEL AND EXPRESSION OF

THE LIKELIHOOD FUNCTION

We assume that K secondary data are available. The noise

is modeled as a LR-SIRV process plus an additive zero-mean

complex white Gaussian noise. A realization of a SIRV pro-

cess is a Gaussian random vector with a random power factor

called the texture τi. The texture is here considered as an un-

known deterministic positive parameter. Therefore, each data

zi ∈ C
m, i = 1, ...,K can be described by zi ∼ C N (0,Ri),

with

Ri = σ2
Im + τi

r
∑

k=1

ckvkv
H
k , (1)

where σ2
Im represents the CM of the white Gaussian noise.

The power of this noise σ2 may be considered unitary since

the data can be normalized by it (or its estimate), therefore

σ2 = 1. The CM of the clutter subspace is described by

its rank r, its eigenvalues ck and associated eigenvectors vk,

k = 1, ..., r. The clutter rank r is assumed to be known.

In classical STAP, r can be evaluated thanks to the Brennan

rule [10]. Moreover, the CM of the clutter will be assumed

to have a low-rank structure (r ≪ m). We will also, as [9],

assume that ck = 1 for k = 1, ..., r. Thus, by denoting the

clutter subspace projector Πc =
∑r

k=1 vkv
H
k , the simplified

CM is:

Ri = Im + τiΠc (2)

The hypothesis of equals ck is mainly imposed by tractability

purpose. Nevertheless section 4.3 will show that the estimator

derived from this model seems robust to an inequality of the

ck’s. A possible interpretation of (2) is that we consider that

the texture τi "absorbs" the factors ck: The average power of

the clutter is uniformly applied over its corresponding sub-

space.

In [9], the texture τi is treated as a random variable with a

known PDF. This hypothesis of prior knowledge is restrictive

in practical cases, where the texture is unknown and even its

PDF is not usually available. Therefore, τi is considered in

this paper as an unknown deterministic parameter. The likeli-

hood of the data, conditioning toΠc and {τi}i=1,...,K is then:

f(z1, ..., zK |Πc, {τi}) =
K
∏

i=1

e−z
H

i
R
−1

i
zi

πm|Ri|
(3)

Since Ri
−1 = (I − Πc) +

1
1+τi

Πc and |Ri| = (τi + 1)r,
equation (3) becomes:

f(z1, ..., zK |Πc, {τi}) =
K
∏

i=1

e
−z

H

i
(In−

τi

1+τi
Πc)zi

πm(τi + 1)r
(4)

One can then express the log-likelihood function of the data

set:

ln(f(z1, ..., zK |Πc, {τi})) = −
K
∑

i=1

z
H
i zi

+

K
∑

i=1

τi
1 + τi

z
H
i Πczi −Km lnπ − r

K
∑

i=1

ln(τi + 1) (5)

Let us now address the problem of the estimation of Πc.

Since Πc =
∑r

k=1 vkv
H
k , the problem is directly equiv-

alent to the estimation of a basis of the clutter subspace

{vk}k=1,...,r.

3. ML ESTIMATOR OF THE CLUTTER SUBSPACE

3.1. Expression of the clutter subspace MLE

The estimation method goes as follows: the MLEs of the un-

known textures τi, i = 1, ...,K, are firstly determined from

(5), these parameters are then replaced by their MLEs expres-

sions in (5) to obtain the generalized log-likelihood f̂ and fi-

nally this functional (plus a normalization constraint function)

is derived with respect to vk, k = 1, ..., r which leads to the

expression of the clutter subspace basis MLE.

Lemma 3.1 The MLE under positivity constraint of τi, i =
1, ...,K conditional to Πc, denoted τ̂i, is:

τ̂i =

{

1
r
z
H
i Πczi − 1 if ||Πczi||

2 > r
0 else

(6)

Proof By taking the derivative of the expression (5) with re-

spect to (w.r.t.) τi, for a specific i ∈ 1, ...,K:

∂ ln(f(z1, ..., zn|τi))

∂τi
=

z
H
i Πczi

(1 + τi)2
−

r

τi + 1
(7)

This equation is canceled to identify τ̂i, the MLE of τi. Nev-

ertheless the texture is known to be a positive value. Since

the likelihood is strictly decreasing after his maximum τ̂i, the
MLE under the positivity constraint is given by (6).

Proposition 3.2 The ML basis of the clutter subspace is de-

fined by the {v̂k}k=1,...,r that are the r most important eigen-

vectors of the matrix M̂(Πc):

M̂(Πc) =
K
∑

i=1

τ̂i
τ̂i + 1

ziz
H
i (8)

Proof The τi’s, are replaced in by their MLE expression

τ̂i, i = 1, ...,K (5) in order to obtain the generalized log-

likelihood f̂ :

ln(f̂(z1, ..., zn|v1, ...,vr)) = −

K
∑

i=1

z
H
i zi

+
K
∑

i=1

z
H
i Πczi −Km lnπ −Kr − r

K
∑

i=1

ln(
1

r
z
H
i Πczi) (9)



The vectors vk, k = 1, ..., r must form a basis of the clut-

ter subspace estimate. Thus, the maximization of f̂ with re-

spect to the vk’s must be done under a normalization con-

straint. Nevertheless, imposing an orthogonality constraint is

not necessary since the solution will appear as eigenvectors of

an unique matrix and therefore inherently orthogonal to each

other. The functional g to maximize w.r.t the vk’s is:

ln(g(z1, ..., zK)) = −
K
∑

i=1

z
H
i zi

+

K
∑

i=1

r
∑

k=1

z
H
i vkv

H
k zi −Km lnπ −Kr

−r
K
∑

i=1

ln

(

1

r

r
∑

k=1

z
H
i vkv

H
k zi

)

+
r
∑

k=1

λk(v
H
k vk − 1) (10)

where λk, k = 1, ..., r are Lagrange multipliers associated

to the normalization constraint. The functional g is differen-

tiated, then canceled w.r.t. v
H
j for a specific j ∈ 1, ..., r to

obtain the expressions of the clutter subspace vectors estima-

tors:

∂g(z1, ..., zK)

∂vH
j

= 0⇔

K
∑

i=1

ziz
H
i vj − r

K
∑

i=1

ziz
H
i vj

zHi

(
∑r

k=1 vkv
H
k

)

zi

= λjvj , (11)

where the expression of the τ̂i’s given from Lemma 3.1 is

identified:

(11)⇔

(

K
∑

i=1

τ̂i
τ̂i + 1

ziz
H
i

)

vj = λjvj (12)

Thus, the ML basis of the clutter subspace is defined by the

{v̂k}k=1,...,r that are the r most important eigenvectors of the

matrix M̂(Πc):

M̂(Πc) =
K
∑

i=1

τ̂i
τ̂i + 1

ziz
H
i (13)

One may notice that the matrix defining the {v̂k} is a

SCM of the data scaled by a factor that give more weight to

zi’s with a strong Clutter to Overall Noise Ratio (CONR).

This factor is in fact the CONR of the considered zi MLE,

which expression depends on the texture estimates. In other

words, realizations that contain more power in the subspace of

interest are given more significance in the estimation process.

3.2. Remark on computation

Proposition 3.2 gives an expression where the clutter sub-

space estimator is depending on this subspace itself. Indeed,

Πc is estimated using τ̂i, which is estimated conditioning to

Πc. The same problem appears in [9], and have been solved

by using an Expectation-Maximization (EM) [11] approach

which leads to a recursive algorithm. We propose in this pa-

per an equivalent algorithm to approach the fixed point of the

MLE solution of proposition 3.2. The process consists in es-

timating the τ̂
(n)
i ’s with

τ̂
(n)
i =

{

1
r
z
H
i Π̂

(n)
c zi − 1 if ||Π̂

(n)
c zi||

2 > r
0 else

(14)

then on picking out the r most important eigenvectors of the

matrix:

M̂
(n+1)(Π̂(n)

c ) =
K
∑

i=1

τ̂
(n)
i

τ̂
(n)
i + 1

ziz
H
i (15)

to obtain the updated clutter subspace projector estimate

Π̂
(n+1)
c . This algorithm is an alternate maximization of the

function f̂ (bounded), therefore its convergence is ensured.

Nevertheless, it could reach local maximums of the function

and should be carefully initialized. Π
(0)
c will be here given by

the r most important eigenvectors of the SCM since it is, as

discussed in [9], good initial guess. The convergence of this

algorithm will also be illustrated by simulations in section

4.1.

4. SIMULATIONS RESULTS

This section deals with numerical simulations to illustrate

the performance of the proposed estimator. Two criteria

of performance are studied. The first one, called Power-

Suppression [9], represents the average "accuracy" of the

subspace estimation. The second one, the Signal to Interfer-

ence plus Noise Ratio (SINR) [1] loss, is linked to classical

STAP Radar filtering performance.

For comparison purposes, two clutter subspaceMLEs pre-

sented in [9] are briefly recalled:

• Clutter subspace estimator with known texture :

This correspond to the optimal estimation procedure

but is not realizable in practice. It will be used as a

theoretical benchmark. If the texture τi is known for

each realization, the ML basis of the clutter subspace is

defined by the {v̂k}k=1,...,r that are the r most impor-

tant eigenvectors of the matrix M:

M =
K
∑

i=1

τi
τi + 1

ziz
H
i (16)

• Clutter subspace estimator with known texture PDF :

If the texture PDF, denoted fτ , is known, the ML basis

of the clutter subspace is defined by the {v̂k}k=1,...,r

that are the r most important eigenvectors of the matrix



Mf :

Mf =

K
∑

i=1

[

1 +
h′
(
∑r

k=1 z
H
i vkv

H
k zi

)

h
(
∑r

k=1 z
H
i vkv

H
k zi

)

]

ziz
H
i ,

(17)

with

h(q) =

∫

∞

0

exp−q/(1 + τi)

(1 + τi)r
fτ (τi)dτi (18)

4.1. Convergence of the algorithm

For these simulations, secondary data have been generated

according to the LR clutter plus white Gaussian noise model

specified in Eq. (2). The PDF associated to the texture is here

a discrete law of the form:

fτ (y) =

NY
∑

n=1

pnδ(y − an) (19)

The values of the parameters of fτ have been set to: NY = 3,
(a1, a2, a3) = α(0.1, 1, 100) and (p1, p2, p3) = (0.5, 0.4, 0.1).
The factor α is a parameter used to set the Clutter to Noise

Ratio (CNR).

Fig. 1. Mean Log-Likelihood (on 1000 trials) in function of the algorithm

step. m = 15, r = 3, CNR = 0dB

Figure 1 shows the convergence of the algorithm de-

scribed in 3.2 to compute the proposed estimator. It presents

the mean Log-Likelihood (on 1000 trials) versus the algo-

rithm step.

4.2. Power Suppression

Theses simulations present a comparison between the pro-

posed estimator, the classical one and those based on Eqs (16)

and (17). Secondary data have been generated as in the previ-

ous section. The criterion used to compare the methods is the

Power Suppression [9], namely:

Power-Suppression = 20 log10(sin(φ)), (20)

where φ is the maximum angle between the estimated sub-

space and the true one.

Figure 2 shows the Power-Suppression evolution with re-

spect to K and CNR with 3 iterations for the iterative esti-

mators. As it could be expected, the performance of our new

Fig. 2. Power-Suppression mean on 10000 iterations for K varying with

CNR = 0dB (left) and for CNR varying with K = 60 (right). For clutter

subspace estimator derived from the SCM (dark blue), the proposed estimator

(light blue), MLE with known texture (black) and MLE with known texture

PDF (red). m = 15, r = 3.

estimator is better than the classical one based on SCM, espe-

cially for largeK and low CNR. Indeed, if the CNR is high

enough, the performance of the SCM estimator is equivalent

to the others due to the small contribution of the white Gaus-

sian noise relatively to the LR-SIRV process. The method of

[9] performs better estimation than the proposed method but

cannot be used in practice if the texture PDF is unknown.

4.3. STAP simulations

STAP [1] is applied to airborne radar in order to detect mov-

ing targets. Typically, the radar receiver consists in an array

ofQ antenna elements processing P pulses in a coherent pro-

cessing interval (m = PQ). In this framework, we assume

that the received signal z is a complex known signal d cor-

rupted by an additive disturbance n which follows the gen-

eral noise model described in Eq. (1) and therefore does not

follows the assumption λ1 = ... = λr = 1.

z = d+ n (21)

With a LR clutter, it is well known that a correct sub-optimal

filter is [3, 4]:

ŵlr = Π̂
⊥

c d =
(

Im − Π̂c

)

d (22)

We assume to have K secondary data zi ∼ C N (0,Ri)
which only contain the disturbance to estimate the clutter sub-

space projector and then process the filtering of z. Of course,

the performance of the LR filters will directly rely on the ac-

curacy of the estimation of Πc. To evaluate the performance

of a sub-optimal filter, the SINR [1] loss is currenlty used:

it is the ratio between the SINRout, computed for ŵlr, and

SINRmax computed for the optimal filter w = R
−1

d. We

compare the LR STAP filter built from our new estimator of

the subspace projector with the one built from the subspace

projector derived from the SCM.

We consider the following STAP configuration. The num-

ber Q of sensors is 8 and the number P of coherent pulses is



also 8. The center frequency and the bandwidth are respec-

tively equal to f0 = 450 MHz and B = 4 MHz. The radar

velocity is 100 m/s. The inter-element spacing is d = c
2f0

(c is the celerity of light) and the pulse repetition frequency

is fr = 600 Hz. The clutter rank is computed from Brennan

rule [10] and is equal to r = 15 ≪ 64, therefore, the low

rank assumption is valid. The texture PDF is a Gamma law of

shape parameter ν = 0.1 and scale parameter 1
ν
.

4.3.1. SINR Loss

Figure 3 shows the SINR Loss evolution with respect to K
and CNR. We notice that the LR STAP filter built from our

estimator still outperforms the LR classical one, which shows

the robustness of the approach relative to the hypothesis of

equals ck. Moreover, it reaches performance close to the theo-

retical optimum. Nevertheless, for highCNR, both LR STAP

filters have slightly the same performances. Due to complex-

ity of computation of the term (17), filter based on it is not

included in this simulation, which is also justified by the fact

that the texture PDF is a priori unknown in this application.

Fig. 3. SINR loss mean on 1000 iterations for K varying with CNR =

0dB (left) and forCNR varying withK = 384 (right). For clutter subspace

estimator derived from the SCM (dark blue), the proposed estimator (light

blue) and MLE with known texture (black). m = 64, r = 15.

4.3.2. Filter output

For this simulation, a target with a SNR of 0 dB at {40 m/s,

20 deg} is observed in an heterogeneous clutter environment.

The total number of secondary data used to estimate Πc is

K = 30. The clutter to noise ratio is 0 dB. Figure 4 presents

the output of LR STAP filters based on respectively the SCM

and estimator from proposition 3.2. It illustrates that the pre-

sented estimator allows to ensure a detection with lower false

alarm rate than with the estimator derived from the SCM since

it provides a better interference rejection.

5. CONCLUSION

In this paper has been introduced a new MLE of the clutter

subspace projector in the context of a low-rank SIRV plus

white Gaussian noise which outperforms the classical estima-

tor based on the SCM. This estimator does not require prior

Fig. 4. Filter outputs realized with LR STAP filters built from Π̂c estimated

through SCM (left) and the proposed MLE (right).

knowledge on the texture to be computed. This approach

leads, of course, to a loss of performance compared to esti-

mators presented in [9] (with known texture or known texture

PDF), but allows to perform an estimation in less restrictive

contexts: for example in STAP Radar filtering where no in-

formation on the texture is available. Moreover, the presented

estimator seems robust to a model variation induced by non

equal eigenvalues of the clutter subspace covariance matrix,

which is likely in a realistic context.
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