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Abstract—Detecting targets embedded in a noisy environment is an

important topic in adaptive array processing. In the traditional statistical

framework, this problem is addressed through a binary hypothesis

test, which usually requires the estimation of side parameters from

secondary data. The latter are assumed to be homogeneous and target-

free, which is in practice questionable. Indeed, secondary data are usually

corrupted by radar clutters and/or jammers which can be non-stationary

and locally low rank. Fortunately, the latter behaviors can be well

acknowledged by a union-of-subspaces model. In this work, we propose

a modified subspace clustering model which can be solved using convex

optimization algorithms. In the context of multiple sparse target detection

and localization, a comparison is performed with various robust detection

methods exhibiting advantages and drawbacks of the proposed one.

Index Terms—Target detection, Non-stationary clutter, Subspace clus-

tering.

I. INTRODUCTION

Detecting targets enclosed in a noisy environment is a major topic

in adaptive array processing, which still drives research interest. Tra-

ditionally, this problem is addressed through the statistical framework

by expressing a binary hypothesis test to discriminate the presence

of targets or not [1,2]. The computation of decision statistics usually

requires the estimation of side parameters, such as the interference

plus noise covariance matrix. This step is crucial since it directly

impacts the performance of the detection process. Thus, this topic has

been widely investigated through various statistical models [3–7].

However, in the classical statistical adaptive detection paradigm,

the parameter learning step requires the availability of a sufficiently

large dataset, called secondary data, which are assumed to be ho-

mogeneous and target-free. These conditions are not necessarily met

in practice, depending on the observation environment, the measur-

ing system, or the acquisition mode. As examples, the secondary

dataset can be reduced in size, heterogeneous (i.e., non-stationary)

or contaminated by targets. This issues motivated the development

of numerous robust detection methods and have been addressed

with various approaches, such as regularization or subspace methods

[6, 8–11].

Following [12], we propose in this paper to leverage robust

subspace clustering techniques in order to alleviate a possible non-

stationarity of the secondary dataset. This implies to reformulate the

detection problem as a structured recovery/regression rather than a

statistical hypothesis test (see e.g. [13]). Indeed, the whole dataset

(primary and secondary data) can be modeled as the sum of sparse

targets embedded locally in low rank clutter with – possibly non-

stationary – interferences. In this context, recent machine learning

techniques addressing the problem of subspace clustering and/or

sparse matrix recovery can be used. For example, the Robust Principal
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Component Analysis [14] is well-suited for the recovery of “low-

rank + sparse” matrices. Here, the non-stationarity of radar clut-

ters/jammers can be better acknowledged by a union-of-subspaces

model, which naturally points to the use of the subspace clustering

techniques [15, 16].

In this context, [12] proposed the use of Sparse Subspace Clus-

tering (SSC) for radar detection and illustrated its feasibility on a real

dataset. Following from this work:

• We explore a variant of SSC proposed in [15] (formulating a relaxed

convex problem) to include a dictionary, needed in radar detection.

• We illustrate the robustness of the SSC approach to non-stationary

interference on simulated data.

This paper is organized as follows. In section II, the data model

is introduced. Some limitations of the classic statistical detection are

emphasized, leading to a new approach presented in Section III. In

this section, we reformulate the detection problem as the recovery of

a sparse matrix. In section IV, we compare the different approaches

for target detection in non-stationary jamming.

In what follows, the notation ‖A‖1 is for the ℓ1-norm of the

matrix A ∈ C
n×m, which is given by ‖A‖1 =

∑
n,m

|an,m|. The

operator diag (A) collects all the diagonal elements of the matrix A

into a vector. For a matrix A, Tr (A) denotes the trace of A.

II. PROBLEM SETUP

A. Data model

Let be a radar receiver, composed by M antenna elements,

collecting K snapshots, zk ∈ C
M , k = 1, . . . ,K. Theses samples

are a combination of different contributions, modeled as below [17]:

zk = vk + ck + nk k = 1, . . . ,K where, (1)

• vk is related to the target responses. Due to physical considerations

and the geometry of the receiver, the structure of the related steering

vector d, is known. Then a dictionary D mapping the whole angle-

of-view can be constructed as D = [d1, . . . , dT ], with T the size of

the dictionary. Thus, the vector vk can be expressed as

vk = Dαk (2)

where αk is the vector of power/phase shifts coefficients. In practice,

only a small number of targets is active compared to the size of the

dictionary. Therefore, αk is a sparse vector.

• ck refers to the interferences, such as ground clutter and/or jammers.

From physical consideration on the system [18], we know that the

clutter contribution belongs to a low-rank subspace of size R ≪ M .

For a sufficient number of samples, i.e. K > R, we can then consider

that a vector ck can be expressed as a linear combination of the other

samples, cp, p ∈ [[1,K]] \ {k}:

C
h
, [c1, . . . , cK ] = C

h
W

h, such that
[
W

h
]
i,i

= 0 (3)



where Wh sparse. The relation in (3) is also called the self-

representation property of the data [15].

• nk denotes a dense noise, e.g., the thermal noise, which is assumed

to be white centered Gaussian distributed: nk ∼ CN
(
0, σ2IM

)
.

By concatenating column-wise for all the samples, the model in (1)

can be rewritten in a matrix form by

Z
h = V

h + C
h + N

h = DA
h + C

h + N
h

(4)

where the matrix Ah = [α1, . . . ,αK ] is sparse.

In the case where the whole received samples are not nec-

essarily homogeneous, e.g., the low-rank subspace describing the

interference changes during the acquisition process, the model (4)

still holds. Indeed, we can consider that the heterogeneity in the

samples can be modeled as an union of J unknown homogeneous

subpartitions. For each homogeneous subpartition of Kj snapshots,

such that
J∑

j=1

Kj = K, the model in (4) still remains valid. Then by

concatenating column-wise each subpartition, we finally obtain

Z = V + C + N with

{
V = DA

C = CW, diag (W) = 0
(5)

where W is a block diagonal (up to a sorting permutation) composed

by the matrices Wh
1 , . . . ,Wh

J . We recall that the sparse matrix A,

which is related to the present targets, is the center of interest in our

detection application. However, it is worth mentioning that the sparse

matrix W, which is block-diagonal up to a sorting permutation, is

useful from a clustering perspective.

B. Limitations of the classic statistical detection

Traditionally in statistical signal processing, the target detection

problem can be formalized by the following binary hypothesis test:
{

H0 : z0 = c0 + n0 ; zk = ck + nk, ∀ k ∈ [[1,K]]

H1 : z0 = Dα0 + c0 + n0 ; zk = ck + nk, ∀ k ∈ [[1,K]]

where z0 is the primary sample, which is the tested sample and

zk’s are the secondary data, which are assumed to be independant,

identically distributed (i.i.d.), and target-free. Under H0, the received

signal only contains the clutter response, i.e. interference and noise.

Under H1, the tested signal additionally contains a target response.

Several approaches have been proposed in the literature to design

a detector [1–8, 17]. Among them, the most powerful tests are

usually based on likelihood-ratio, namely the Neyman-Pearson test. In

practice, the latter involve some unknown parameters of the chosen

interference-plus-noise model such as the covariance matrix of the

clutter. Therefore, a first step of estimation should be achieved, giving

an adaptive nature to the obtained detector. To that end, the secondary

data are used for the clutter’s covariance estimation. The estimate

plays a central role in the performance of the resulting detector, which

is why this step is still driving scientific research [5, 19–21].

However, this 2-step scheme is based on two important assump-

tions, which can be inaccurate in practice. The first one is about the

homogeneity of the secondary data, i.e. these samples are assumed to

be i.i.d.. This means that either the potential non-stationarity of the

clutter is not taken into account or we know a priori the partition of

the secondary data in which each cluster contains i.i.d. samples. The

second hypothesis concerns the target-free nature of the secondary

data, which can be invalidated in the case of the presence of several

targets in the observation area. From these two mentioned limitations,

we propose a novel approach of the problem in order to perform

a simultaneous estimation/detection process without assuming the

availability of such secondary data.

III. SPARSE SUBSPACE CLUSTERING

A. Robust Subspace Recovery via bi-sparsity

In order to perform a simultaneous estimation and detection from

collected observations, which are a noisy version of DA+C, we aim

to recover a sparse matrix, containing the information of the targets

and an union of low-rank subspaces, corresponding to non-stationary

interferences. This approach, while novel for radar detection, is under

a lot of ongoing investigations in machine learning or computer vision

problems [15, 22]. The following minimization problem

min
W,A,C

‖W‖1 + λ ‖A‖1 s.t.






(i) Z = DA + C,

(ii) C = CW,

(iii) diag (W) = 0

(6)

initially introduced in [16] without dictionary, and then applied with

a dictionary in [12], is relevant to solve this task. Indeed, the ℓ1-

norm promotes sparsity of the matrices W and A and the parameter

λ balance the two terms in the objective function. Therefore, the

recovered sparse matrix Â allows us to build a detection map and

then to compare with a threshold the non-zero elements in order to

decide the presence of the targets or not and to localize the activated

atoms in the dictionary D. Due to the bilinear constraint (ii), the

problem (6) is non-convex. The optimization can be achieved by the

linearized version of the Alternating Direction Method of Multipliers

(ADMM) [23, 24].

B. Relaxation of the initial problem

Based on a rewriting of the problem (6) introduced in [15], we

also propose to study a convexified modification of this problem.

Indeed, starting from Z = DA + C + N and C = CW, we obtain

ZW = DAW + CW + NW = DAW + Z − DA − N + NW

⇒ Z = ZW + DA (I − W) + N (I − W)

Z = ZW + DÃ + Ñ (7)

Then, we propose to solve the following problem

min
W,Ã

‖W‖1 + λ
∥∥∥Ã

∥∥∥
1

s.t.

{
Z = DÃ + ZW

diag (W) = 0
(8)

where the ℓ1-norm promotes the sparsity of the matrices W and Ã

and the parameter λ balances the two terms in the criterion.

The problem (8) being convex, it can be efficiently solved using

convex programming tools [25]. On one hand, the class of Accelerated

Proximal Gradient algorithms, which are first-order methods, theoret-

ically offers a convergence rate guarantee of O
(
1/k2

)
[26] but needs,

for this aim, an appropriate continuation technique. In practice, it can

lead to variations in the convergence rate. On the other hand, the class

of ADMM algorithms, which is well-suited for parallel processing,

exhibits theoretically a convergence rate guarantee of O (1/k) [27],

but offering more stability in practice. In the simulations, we chose

the ADMM approach for the resolution of (8).

IV. APPLICATION TO DETECTION IN NON-STATIONARY JAMMING

In this section, we consider the problem of target detection

where the interferences are due to either stationary or non-stationary

jammers.
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Fig. 1: Scenario with stationary jammer

A. Case 1: stationary jammers

Let consider an uniform linear array with M = 8 sensors, half

wavelength spaced, collecting K = 50 snapshots. The related steering

vector is given by:

d (θ) =
[
1, eiπ sin θ, . . . , eiπ(m−1) sin θ

]T

The dictionary D is built from d (θ), for all θ ∈ [[−90, 90[[. The targets

of interest, which are located at θt = 40o, 10o,−10o and −60o at

different sample times, are marked as a white cross in Fig. 1. We

consider in addition the presence of two jammers, through a stochastic

model, in the observation scenario, which are similar as fake targets

d (θj), with θj = 20o and −20o. Thus, the covariance of the jammers,

which is low-rank, is given by:

Rjam =

2∑

j=1

d (θj) d (θj)
H = UΛU

H
(9)

where U and Λ are the eigen-decomposition of Rjam. We construct

the covariance matrix of the total noise by:

R =
JNR

Tr (Γ)
UΓU

H + σ2
IM (10)

with JNR is the Jammer to Noise Ratio and Γ is a diagonal matrix,

such that γ1 = γ2 = 3. Analogously, we define the Signal to Noise

Ratio (SNR) by SNR =
‖V‖2
σ2

, where σ2 is fixed to 1. Finally, the

total noise is sampled from a centered circular complex Gaussian

distribution CN (0,R). In Fig. 1, a realization of the background

response is plotted for all θ in the considered grid.

B. Case 2: non-stationary jammers

For the case of non-stationary jammers, we consider that in the set

of K = 50 snapshots, there exists J = 3 homogeneous subpartitions,

bounded by the white dotted line in Fig. 2. In the first subpartition, the

jammers are in θj = 20o and −20o with γ1 = γ2 = 3. In the second

one, we have θj = 20o,−45o and −25o with γ1 = γ3 = 2 = γ2/2.

In the last one, we set θj = 60o and 20o with γ1 = γ3 = 3.

C. Compared methods

In the considered application, we compare the following methods:

• the Adaptive Normalized Matched Filter (ANMF), where the covari-

ance learning is based on the Sample Covariance Matrix, computed
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Fig. 2: Scenario with non-stationary jammer
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Fig. 3: Normalized detection map for case 1

from the 2M samples surrounding the tested sample, which will serve

as secondary data.

• the ANMF, where the covariance learning is using the Tyler’s

estimator [28] on the 2M samples surrounding the tested sample.

• the RoSuRe-detector [12, 16], which solves the problem (6) by

returning A, from the given observations Z and the considered

dictionary D.

• the modification of RoSuRe-detector, denoted by m-RoSuRe and

which is obtained by solving the problem (8) and returning Ã, from

Z and D. We recall the following relation Ã = A (I − W).

In order to compare the different methods, the obtained detection

map are insightful but not quantitative. Thus, we compute the empiri-

cal Probability of Detection (PD) for all the targets and the empirical

Probability of False Alarm (PFA) (summed for all the other grid

locations) with respect to a threshold. From these quantities, we can

compare the Receiver Operating Characteristic (ROC) curve of each

detector.
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Fig. 4: Normalized detection map for case 2

In Fig. 3, the normalized detection map, before any thresholding,

is plotted for SNR = 9 dB and JNR = 15 dB, obtained with the

different methods with a correct choice of λ for the sparse based

methods. The choice of λ will be discussed later. All the methods

are able to retrieve the locations and the instants of present targets.

Nevertheless, the ANMF based methods introduce non negligible

sidelodes, which can increase the PFA, unlike the methods using sub-

space clustering. In addition, we can notice that the latter remove more

prominently the jammers impact. It is worth noting that the positions

of the estimated and detected targets given by the modification of

RoSure are slightly shifted since the target sparse matrix is different

from the initial model.

In Fig. 4, we can draw the same conclusions as for Fig. 3. How-

ever, the performance of ANMF-based procedure are degraded since

the assumptions on secondary data (homogeneity and target-free) are

not satisfied. Furthermore, we can see that the clutter cancelation

obtained by the clustering methods impacts all the samples, whereas

the jammers direction changes over the time.

In Fig. 5, we can see the loss of performance for the ANMF-based

methods when the jamming is non-stationary, whereas the RoSuRe-

based ones seem to be less sensitive and still perform better. While

having the best visual detection map, m-RoSuRe seems to reach

more slowly a PD close to 1. Indeed, working with Ã instead of

A may introduce some bias in the estimated target positions (recall

that Ã = A (I − W)) . This phenomenon impacts the displayed

detection performance as we strictly measure the PD/PFA on the

actual positions.

In Fig. 6, we analyse, for the case 2, the influence of the

regularization parameter λ, which balance the two ℓ1-norms. We can

see that the performance obtained by RoSuRe seems to be quite

impervious to λ, unlike the one of m-RoSuRe. Again, it can be

explained by the relation Ã = A (I − W): the dependence of the

estimate on both A and W suggest that a careful selection of λ is

required to mitigate the performance loss due to the introduced bias.
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V. CONCLUSION

In this paper, we explored a new formulation for the target

detection problem by means of subspace clustering approach. We

proposed a convex modification of SSC that includes a dictionary.

This method exhibits similar performance compared to the standard

SSC but uncovers a small performance drop for a PD close to 1 due to

a bias introduced on the position estimates by Ã. A correction of this

bias is left as prospect for a forthcoming study. Interestingly, theses

approaches deal with all the samples at once without assumption on

the interferences statistical properties. Hence, they can outperform

the classic statistical detection scheme in the case of non-stationary

clutter/corrupted samples.
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