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ABSTRACT

We consider the optimal performance of blind separation of

Gaussian sources. In practice, this estimation problem is

solved by a two-step procedure: estimation of a set of co-

variance matrices from the observed data and approximate

joint diagonalization of this set to find the unmixing matrix.

Rather than studying the theoretical performance of a specific

method, we are interested in the optimal attainable perfor-

mance of any estimator. To do so, we consider the so-called

intrinsic Cramér-Rao bound, which exploits the geometry of

the parameters of the model. Unlike previous works devel-

oping a Cramér-Rao bound in this context, our solution does

not require any additional hypotheses. To obtain our bound,

we define and study a new Riemannian manifold holding the

parameters of interest. An original estimation error measure

is defined with the help of our Riemannian distance function.

The corresponding Fisher information matrix is then obtained

from the Fisher information metric and orthonormal bases on

the tangent spaces of the manifold. Finally, our theoretical

results are validated on simulated data.

Index Terms— intrinsic Cramér-Rao bound, blind source

separation, approximate joint diagonalization, Riemannian

geometry

1. INTRODUCTION

Blind source separation is a major tool for signal processing

and data analysis in a wide range of engineering fields such

as radar, communications, image processing and biomedical

signals analysis; see [1] for a review of theory and applica-

tions. We consider the determined linear instantaneous blind

separation of Gaussian sources problem based on the mixing

model

x = As, (1)

where x ∈ R
n corresponds to the observations, s ∈ R

n

is the centered multivariate Gaussian random variable with
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independent components corresponding to the sources and

A ∈ GLn (n×n non-singular matrices) is the mixing matrix.

Given some observations of x, the aim is to retrieve estimates

(Â, ŝ) of (A, s).
In practice, we have K sets {xk(t)} of T observations.

Since the sources are independent, the covariance matrix of

{sk(t)} is Λk ∈ D++
n (diagonal positive definite matrices).

Thus, {xk(t)} follows the multivariate Gaussian distribution

with covariance matrix

Ck = AΛkA
T ∈ S++

n (2)

(symmetric positive definite matrices) and the estimation

problem consists in retrieving (A, {Λk}). To solve it, most

methods follow the two steps procedure: (i) compute esti-

mators Ĉk of the K covariance matrices of {xk(t)}; (ii)

perform approximate joint diagonalization of {Ĉk}, i.e., find

B ∈ GLn such that {BĈkB
T } contains matrices as diag-

onal as possible according to a diagonality criterion. The

estimator (Â, {Λ̂k}) is then defined as (B−1,BĈkB
T ).

The two most popular diagonality criteria are: (i) the

least squares criterion, proposed in [2], which is based on

the Frobenius distance between BĈkB
T and its diago-

nal part; and (ii) the criterion based on the log-likelihood of

model (1) [3,4]. Other diagonality criteria have also been con-

sidered; see e.g. [5, 6] which exploits the geometry of S++
n .

Many methods have been developed with various criteria; see

e.g. [2,4,7–9]. Recently, the geometrical structure of GLn has

been exploited to build a Riemannian optimization framework

adapted to approximate joint diagonalization [6, 10].

Concerning the theoretical performance of the estimators,

different studies exist for the considered model. An asymp-

totic analysis is given in [3] for the log-likelihood criterion. A

theoretical analysis in terms of interference signal ratio is pro-

posed in [11] for the least squares criterion. More generally,

several papers propose a theoretical analysis of their estima-

tor, as in [12, 13] for a more general data model. In [8], the

author derives the theoretical analysis of algorithms based ei-

ther on the least squares or log-likelihood criteria when model

errors occur. However, all these analyses do not answer the

question of the optimal attainable performance for the con-



sidered model. To achieve this, one can use the inequality

between the mean squared error (MSE) and the Cramér-Rao

bound (CRB)

MSE(θ, θ̂) ≥ CRB(θ),

where θ contains the true parameters and θ̂ is an estimator.

In the context of the model that we consider, [14] derives the

Cramér-Rao bound associated with the interference signal ra-

tio for the estimation problem of {Ck} and A (equivalent to

our problem of estimating A and {Λk}). To obtain the in-

equality in this case, it is needed for the blocks between pa-

rameters {Ck} and A in the Fisher information matrix to be

equal to 0. Unfortunatly, as mentionned in [14], this property

does not hold in general within our setting.

To overcome this issue, we propose to derive a new

inequality by using an original error measure and the corre-

sponding so-called intrinsic Cramér-Rao bound theoretically

defined in [15] which fits well with the source separation

problem. Inspired by the works of [16] and using the pro-

cedure in [17], the estimation error is measured by a new

Riemannian distance. The associated Fisher information

matrix is obtained from the Fisher information metric and

orthonormal bases of the tangent spaces of the parameter

manifold.

The geometry of the manifold GLn × (D++
n )K holding

the parameters follows from those of GLn and D++
n . Since

sources are Gaussian, we consider the well known geome-

try of D++
n corresponding to the Gaussian distribution [18].

Concerning GLn, several geometries have been considered.

Treating it directly, as in e.g. [10, 19, 20], appears compli-

cated in our case since the Riemannian distance function is

not known in closed form. We rather consider the geometry

proposed in [6], where the polar decomposition is exploited to

define an isomorphic manifold to GLn: the product On×S++
n

(On, orthogonal matrices). This representation appears ad-

vantageous because Riemannian distances for both On and

S++
n are known.

2. MODEL

In this section, we detail the distribution of the data {x(t)
k } at

hand and we show that the parameters (A, {Λk}) belong to

the manifold M = (On × S++
n ). Then, we study the geom-

etry of M in order to define the Riemannian distance func-

tion and the corresponding orthonormal bases on the tangent

spaces of M, which are needed to define the error measure

and Fisher information matrix, respectively.

2.1. Data and parameter manifold

The K sets of observations {x(t)
k } in R

n follow the centered

mutivariate Gaussian distribution with covariance matrices

{AΛkA
T } ∈ S++

n , where A ∈ GLn and Λk ∈ D++
n . Thus,

the probability density function f of {x(t)
k } is

f({xk(t)}|A, {Λk}) =
∏

k

fG({xk(t)}|AΛkA
T ), (3)

where fG is the probability density function of the centered

multivariate Gaussian distribution. Given {x(t)} with covari-

ance matrix C, we have, up to a factor,

fG({x(t)}|C) =
∏

t

det(C)
−1/2 exp(−x(t)TC

−1
x(t)/2).

(4)

The set of parameters (A,Λ1, . . . ,ΛK) of the distribu-

tion of {xk} lie in the manifold GLn × (D++
n )K (it is a

manifold since it is the product of K + 1 manifolds). As

explained in the introduction, dealing with GLn directly is

complicated in our case since the Riemannian distance is not

known in closed form. Instead, we exploit the polar decom-

position as in [6]: every matrix A ∈ GLn admits the unique

decomposition A = US, where (U ,S) ∈ On ×S++
n . Thus,

On × S++
n is isomorphic to GLn and we can choose M =

(On × S++
n )× (D++

n )K as the parameter manifold.

2.2. Riemannian geometry of M
In the following, θ = (U ,S, {Λk}), ξ = (ξU , ξS , {ξk}) and

η = (ηU ,ηS , {ηk}). The tangent space TθM of θ ∈ M is

TθM = {ξ ∈ R
n×n×Sn×(Dn)

K : ξU = UΩ,ΩT=−Ω},

where Sn and Dn denote the spaces of symmetric and diago-

nal matrices, respectively. We equip M with the Riemannian

metric

〈ξ, η〉θ = tr(ξTUηU ) + tr(S−1ξSS
−1ηS)

+
∑

k

tr(Λ−1
k ξkΛ

−1
k ηk). (5)

The Riemannian distance function on M resulting from

metric (5), which is crucial to define the error between true

parameters θ and estimator θ̂, is given in proposition 1.

Proposition 1. The Riemannian distance on M resulting

from (5) is, given θ = (U ,S, {Λk}) and θ̂ = (Û , Ŝ, {Λ̂k}),

δ2(θ, θ̂) =
∥∥∥log(UT Û)

∥∥∥
2

F
+

∥∥∥log(S−1/2ŜS
−1/2)

∥∥∥
2

F

+
∑

k

∥∥∥log(Λ−1
k Λ̂k)

∥∥∥
2

F
,

where log denotes the matrix logarithm.

Proof. The Riemannian distance on On associated with the

part of the metric (5) that concerns U is ‖log(UT Û)‖F [21,

22]. Simarly, the distances on S++
n and D++

n associated with

the parts that concern S and Λk are ‖log(S−1/2ŜS
−1/2)‖F

and ‖log(Λ−1
k Λ̂k)‖F [15, 18]. The result then follows from

the properties of product manifolds.



Finally, an orthonormal basis in TθM according to met-

ric (5), which is needed to define the Fisher information ma-

trix associated with the estimation problem on M, is given in

proposition 2.

Proposition 2. An orthonormal basis {epθ}p in TθM accord-

ing to metric (5) is defined, for i, j ∈ {1, . . . , n}, by

{
{(eij

U
,0,0, . . . ,0)}i>j , {(0, eijS ,0, . . . ,0)}i≥j ,

{(0,0, ei1,0, . . . ,0)}i, {(0,0,0, . . . ,0, eiK)}i
}
,

where

• e
ij
U

= UΩ
ij: Ω

ij skew-symmetric matrix whose ijth

and jith elements are 1/
√
2 and −1/

√
2, zeros elsewhere.

• e
ij
S
= S

1/2ξ
ij
S
S

1/2: ξiiS diagonal matrix whose ith diag-

onal element is one, zeros elsewhere; ξ
ij
S

, i > j, sym-

metric matrix whose ijth and jith elements are 1/
√
2,

zeros elsewhere.

• eik = Λ
1/2
k ξi

Λ
Λ

1/2
k : ξi

Λ
diagonal matrix whose ith ele-

ment is equal to one, zeros elsewhere.

Proof. By definition, it suffices to check that 〈epθ, e
p
θ〉θ = 1

and 〈epθ, e
q
θ〉θ = 0, p 6= q. Basic calculations yield the result.

3. INTRINSIC CRAMÉR-RAO BOUND

We now have all the geometrical elements required to define

the intrinsic Cramér-Rao bound for the considered estimation

problem on M. In order to do so, we first define our estima-

tion error measure from the Riemannian distance of propo-

sition 1. Then, we obtain the Fisher information metric of

distribution (3) on M and we construct the Fisher informa-

tion matrix associated to the basis of proposition 2. Finally,

we obtain the wished inequality.

3.1. Estimation error measure

We define how the error of an unbiased estimator θ̂ of θ in

M is measured. From [15, 16], we know that it corresponds

to the squared Riemannian distance δ2 on M between θ and

θ̂. It is well known that an estimator θ̂ of the blind source

separation problem is only defined up to a permutation and

diagonal scaling. Given any P ∈ Pn (permutation matrices)

and Σ ∈ D∗n (non-singular diagonal matrices), θ̂ is equiva-

lent to

θ̂(P ,Σ) =
(
Û(P ,Σ), Ŝ(P ,Σ),

P T
Σ
−2

Λ̂1P , . . . ,P T
Σ
−2

Λ̂KP
)
,

where (Û(P ,Σ), Ŝ(P ,Σ)) ∈ On×S++
n corresponds to the

polar decomposition of Û ŜΣP .

Let θ̂∗ be the estimator equivalent to θ̂ that best corre-

sponds to θ in M, i.e., such that

θ̂∗ = min
P∈Pn,Σ∈D∗n

δ2M(θ, θ̂(P ,Σ)).

It follows that the error of the unbiased estimator θ̂ of θ is

defined as δ2M(θ, θ̂∗).

3.2. Fisher information matrix

To obtain the Fisher information matrix, we first need to de-

rive the Fisher information metric on M associated with the

probability density function (3) of our estimation problem. It

is achieved in proposition 3.

Proposition 3. Let θ =∈ M, ξ, η ∈ TθM and the mapping

ϕk from M onto S++
n defined by ϕk(θ) = USΛkSU

T . The

Fisher information metric gFIM
θ on M of the probability den-

sity function (3) is

gFIM
θ (ξ, η) =

∑

k

gFIM
G ϕk(θ)

(Dϕk(θ)[ξ],Dϕk(θ)[η]),

where

gFIM
G C(ξ,η) =

T

2
tr(C−1ξC−1η)

is the well-known Gaussian Fisher information metric [15,

18], defined for all C ∈ S++
n and ξ, η ∈ Sn; and the direc-

tional derivative of ϕk is

Dϕk(θ)[ξ] = (UξS + ξUS)ΛkSU
T +USξkSU

T

+USΛk(Sξ
T
U + ξSU

T ).

Proof. One can check that the log-likelihood L of (3) is

L(θ) =
∑

k

LG ◦ ϕk(θ),

where LG is the log-likelihood of the Gaussian distribu-

tion (4). By definition, gFIM
θ (ξ, η) = E[DL(θ)[ξ] DL(θ)[η]].

From [15, theorem 1], we have

gFIM
θ (ξ, η) = −E[D2 L(θ)[ξ, η]]

= −
∑

k E[D
2(LG ◦ ϕk)(θ)[ξ, η]]

=
∑

k E[D(LG ◦ ϕk)(θ)[ξ] D(LG ◦ ϕk)(θ)[η]
=

∑
k g

FIM
G ϕk(θ)

(Dϕk(θ)[ξ],Dϕk(θ)[η]).

Notice that gFIM
θ does not define a Riemannian metric on

M in this case as it is not positive definite. This is due to

the invariance with respect to the action of Σ ∈ D∗n: θ and

θ̃, such that US = Ũ S̃Σ and Λk = Σ
−2

Λ̃k, are equivalent

and ϕk(θ) = ϕk(θ̃). As ϕk is constant on the fiber associated

with Σ, its directional derivative vanishes.
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Fig. 1. Intrinsic Cramér-Rao-Rao bound (CRB) and mean over 100 trials of the squared distance of approximate joint diag-

onalization estimator (ℓ-ℓ) based on the log-likelihood criterion minimized with the framework built in [6] with the intrinsic

constraint versus T/n. The condition number with respect to inversion α of A is 10 on the left panel and 1000 on the right

panel. In this simulation, K = 30 and n = 10.

From the Fisher information metric of proposition 3 and

the orthonormal basis {ξpθ}p of TθM defined in proposi-

tion 2, we can construct the Fisher information matrix F of

size (n2 + nK)× (n2 + nK). Its pqth element is defined as

F pq = gFIM
θ (ξpθ , ξ

q
θ).

Because of the invariance with respect to the action of non-

singular diagonal matrices described above, the Fisher infor-

mation matrix is singular and its rank is n2 + nK − n.

3.3. Inequality

We finally derive the intrinsic Cramér-Rao bound [15, 16] of

an unbiased estimator θ̂ of θ in M. Our Fisher information

matrix F is singular. In such a case, the inverse of F can be

replaced by the Moore-Penrose pseudo-inverse in the bound

as explained in [16]. It follows that the intrinsic Cramér-Rao

bound is

E

[
δ2M(θ, θ̂∗)

]
≥ tr(F †), (6)

where ·† denotes the Moore-Penrose pseudo-inverse.

4. NUMERICAL ILLUSTRATION

We generate a set of K = 30 n× n (with n = 10) symmetric

positive definite matrices Ck according to model

Ck = AΛkA
T . (7)

A = UΣV T , with U and V random orthogonal matrices,

and Σ random diagonal matrix whose minimal and maxi-

mal elements are 1/
√
α and

√
α, where α ∈ {10, 1000} is

the condition number of A with respect to inversion. Matri-

ces Λk ∈ D++
n hold source energies and have i.i.d elements

drawn from the chi-squared distribution with expectation 1.

For T ∈ {15, 50, 100, 500, 1000}, we compute 100 sets of

T random realizations {xk(t)} drawn from the centered mul-

tivariate Gaussian distribution with covariance matrices Ck.

Notice that, with these simulated data, as the determinants

of matrices Ck are not assumed to be known, the hypothe-

sis in [14] for the bound inequality to be derived is not veri-

fied. Moreover, the blocks between A and Λk in our proposed

Fisher information matrix are not equal to 0 in general with

this model.

To perform the blind source separation of {xk(t)},

we first estimate the sample covariance matrices Ĉk =
T−1

∑
t xk(t)xk(t)

T . Then, we compute the joint diagonal-

izer B of the set {Ck} by employing the approximate joint

diagonalization framework proposed in [6] with the criterion

based on the log-likelihood [3, 4]. We choose the so-called

intrinsic constraint in [6], which imposes a specific scaling of

the rows of B, in order to avoid diagonal scaling issues.

In figure 1, the intrinsic Cramér-Rao bound inequality (6)

is illustrated for the joint diagonalization estimator based on

the log-likelihood for different values of α and T/n. For

α = 10, we observe that the performance of this estimator

gets close to the intrinsic Cramér-Rao bound as T/n grows.

For α = 1000, the performance gets closer to the bound as

T/n grows, without reaching it. Thus, this simulation sug-

gests that our intrinsic Cramér-Rao bound is a good predictor

of attainable performance and that a more accurate estimator

might be found for illed-conditioned mixing matrices.

5. CONCLUSIONS

In this article, we have proposed an intrinsic Cramér-Rao

bound for blind separation of Gaussian sources, which is

solved through approximate joint diagonalization of a set of

estimated covariance matrices of the data. We have defined

the Riemannian geometry of a new manifold which holds the

parameters of the model. We have derived the Fisher informa-

tion metric associated with the model and the corresponding

bound. We conclude that this intrinsic Cramér-Rao bound is a

good predictor of performance, thus an interesting alternative

to theoretical performance studies of specific estimators.
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