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I. ABSTRACT

In this paper, we propose a novel scheme for direction
of arrival estimation in the presence of a noise which is a
combination of white Gaussian distributed noise and spher-
ically invariant random distributed noise. Such combination
is present in practical scenario, in which, the Gaussian com-
ponent represents the thermal noise (i.e., the internal noise),
whereas, the spherically invariant random process represents
the possible presence of outliers and/or non-homogeneities
of the environment (i.e., interference, clutter, jammers). The
classical direction of arrival estimation using the maximum
likelihood is computationally intractable. In order to overcome
this drawback while maintaining a fine accuracy and taking
into account the presence of the two noise components, we
design an expectation-maximization algorithm. Finally, numer-
ical simulations show that the proposed algorithm outperforms
the state-of-the-art.

II. INTRODUCTION

Direction of arrival (DoA) estimation is an important topic
with a large panel of applications, such as seismology, digital
communications, sonar, radar, etc. [1]–[3]. A plethora of algo-
rithms have been proposed to deal with conditional (i.e., when
the signal source is assumed to be deterministic and unknown)
and unconditional (i.e., when the signal source are assumed
to follow a Gaussian distribution) DoA estimation [4], [5].
In particular, the majority of the proposed algorithms assume
that the noise follows a Gaussian distribution. In this context,
the conventional maximum likelihood (ML) estimator was
largely studied [6]. In the same vein, sub-optimal algorithms,
based on the second order statistics, aiming to overcome
the computational drawback of the ML estimator have been
proposed in the last three decades [7]–[10]. The latter reveals
to be adequate when the noise is Gaussian distributed. Such
assumption, which is in general a good approximation, relies
on the central limit theorem. Nevertheless, in certain scenario,
as high resolution sensing systems, low-grazing-angle radar
context, etc., the Gaussian assumption is not valid any more
[11]–[15]. Such mismatch leads to a dramatic performance
loss when applying the conventional ML estimator or the
aforementioned sub-optimal algorithms under a non-Gaussian
scenario [16]. To account for such possible non-Gaussian
distributed noise, the spherically invariant random process
(SIRP) has been introduced in the literature [17]. The SIRP
has become popular since it owns a great flexibility allowing

to gather several distributions, e.g., Gaussian, K, Student’t,
Cauchy distributions, etc. [16] [27]. Specifically, the SIRP can
be described as the product of a Gaussian component, the
so-called speckle, and a positive random variable, named the
texture.

In this paper, we aim at proposing a novel DoA estimation
in the context of a noise which is a combination of a Gaussian
component and a SIRP component. This modeling is of
interest in practical scenario, since, recent sensing systems are
faced to two kinds of noise. The first one, is an internal noise
which is generally a thermal noise modeled as a Gaussian
distributed noise thanks to the central limit theorem. The
second component is external and reflects the possible pres-
ence of outliers and/or non-homogeneities of the environment.
Consequently, the presence of such two components lead to a
noise mixture of Gaussian and SIRP distributed noise. Solving
such inference problem by a brute force ML estimator is
unfeasible due to its high computational cost. In our work,
we propose the use of the expectation-maximization (EM)
algorithm. The EM algorithm is an iterative algorithm that
aims to achieve the ML estimate in a computable way [18].
In order to design the EM, we select in a proper way the
complete data which is constituted of the unknown realization
of the external noise and the observations. Interestingly, such
choice leads to closed-form expressions regarding the E-step,
mostly closed-form expression in the M-step (apart from the
optimization part regarding the DoA).

Notation: The following notations are used through the
paper. Matrices and vectors are represented by bold upper-
case and bold lowercase letters, respectively. Vectors are
by default in column orientation. (.)T , (.)H , Tr {.} and |.|
denote the transpose, the conjugate transpose, the trace and
the determinant of a matrix, respectively. E {.} represents the
expectation and the weighted norm is defined as ‖w‖2W =
wHW−1w. Finally, CN (m,C) denotes a complex circular
Gaussian distribution with mean m and covariance matrix C
and invGamma(a, b) represents an inverse Gamma distribution
parameterized by a scale parameter, a, and shape parameter b.

III. MODEL SETUP

Consider an array (possibly non uniform) of n sensors that
receives a deterministic and unknown signal denoted s(t). The
output array signal reads

y(t) = a(θ)s(t) + n(t) t = 1, . . . , T
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in which a(θ) is the steering vector indexed by the unknown
parameter of interest θ (θ can denote the bearing/DoA of a
far field source observed by a linear array, the concatenation
of the azimuth and the elevation of a planar array, or the
bearing and the range in a near-field scenario, ect. [2]).
In addition, n(t) denotes the noise component and T the
total number of snapshots. As stated before, the noise is
assumed to be a mixture of a thermal noise, which follows a
Gaussian distribution denoted t(t), and an additive noise which
represents the possible presence of outliers o(t). The latter is
assumed to follow a spherically invariant random process [17].
Consequently, the mixture of noise reads

n(t) = t(t) + o(t)

in which the i.i.d. thermal noise t(t) ∼ CN (0, σ2I), whereas
the SIRV term o(t) =

√
τ(t)x(t) where the texture parameter

τ(t) ∼ pτ and the speckle parameter reads x(t) ∼ CN (0,Σ).
It is worth mentioning that the use of the spherically invariant
random process is motivated by its capability to model non-
Gaussian heavy tailed distributed noise, but also to adaptively
consider Gaussian noise in the extreme case when there are
no outliers, thus gathering a wide range of distribution (the
Student’t, K, Gaussian and Cauchy distributions just to cite a
few [16].) In the following, we consider the texture parameter
as deterministic but unknown parameter. By doing this, we do
not specify the distribution of the texture parameter (which is
commonly unknown in practice) and thus, we ensure flexibility
and robustness of the proposed algorithm.

Based on the hypothesis above, the maximum likelihood
estimator reads as the following minimization

φ̂ML = arg max
φ
LML(y(1), . . . ,y(T )|φ) (1)

in which the negative log likelihood is
LML(y(1), . . . ,y(T )|φ) =

∑t=1
T log |τ(t)Σ +

σ2I| + (y(t) − a(θ)s(t))H
(
τ(t)Σ + σ2I

)−1
(y(t) −

a(θ)s(t)) in which the unknown parameter
φ =

{
θ, {s(t)}t=1,...,T , ζ, σ

2, {τ(t)}t=1,...,T

}
where ζ

is the concatenation of the non redundant elements in Σ.
From above, it is clear that a brute force maximization of (1)

is unfeasible. In the following, we make use of the expectation
maximization algorithm in order to approach (asymptotically)
the maximum likelihood estimate φ̂ML.

IV. THE PROPOSED EM BASED SCHEME

The EM algorithm is an iterative scheme that attempts
to find the maximum likelihood in an elegant manner [18].
Specifically, it consists of two steps. In the first step (i.e., the
E-step (expectation)), we compute the expectation of the log
likelihood of the complete data conditioned to the observation
(i.e., the incomplete data) and the previous estimate denoted
φ̂(m) from the previous mth iteration. In the second step
(i.e., the M-step (maximization)), we maximize the previously
derived expectation w.r.t. to φ for a fixed φ̂(m) in order to
obtain a new refinement φ̂(m+1). Then, we iterate these two
steps until convergence.

The complete data should be carefully chosen in order to
make the M-step as simple as possible (and if possible in

closed-form expressions) but also in a way that we would
be able to derive, analytically, the expectation of the log
likelihood of the complete data. In our case, it is of interest
to consider the complete data as z(t) = {y(t),o(t)} for
t = 1, . . . , T . Consequently, the complete likelihood reads

p(z(t)|φ) = p(y(t)|o(t),θ, s(t), σ2)p(o(t)|ζ, τ(t))

=
1

σ2nτ(t)n|Σ|
exp−‖y(t)−a(θ)s(t)−o(t)‖

2
σ2
−‖o(t)‖2τ(t)Σ .

Thus,

log p(z(t)|φ) =− n log |σ2| − n log |τ(t)| − log |Σ|
− ‖y(t)− a(θ)s(t)− o(t)‖2σ2 − ‖o(t)‖2τ(t)Σ

In the following, we compute the expectation of the latter
complete log likelihood.

A. E-step

First, let us note that the observations and the outliers term
are jointly Gaussian, i.e.,(

y(t)− a(θ)s(t)
o(t)

)
|φ ∼ CN

(
0, Σ̄

)
(2)

with

Σ̄ =

(
τ(t)Σ + σ2I τ(t)Σ

τ(t)Σ τ(t)Σ

)
Consequently, it is easy to see that (e.g., [19])

o(t)|y(t),φ ∼ CN
(
m(t)o(t)|y(t),Covo(t)|y(t)

)
in which

m(t)o(t)|y(t) = τ(t)ΣH(τ(t)Σ + σ2I)−1(y(t)− a(θ)s(t))

and

Covo(t)|y(t) = τ(t)Σ− τ(t)2ΣH(τ(t)Σ + σ2I)−1Σ.

Meaning that the expectation of the sufficient statistics condi-
tioned to the observation y(t) and the previous estimate φ̂(m)

reads

ô(t) = Eo(t)|y(t),φ̂(m) {o(t)} = (3)

τ̂(t)(m)
(
Σ̂(m)

)H (
τ̂(t)(m)Σ̂(m) +

(
σ̂2
)(m)

I

)−1
(y(t)− a(θ̂(m))s(t))

and

̂o(t)o(t)H = Eo(t)|y(t),φ̂(m)

{
o(t)o(t)H

}
= τ̂ (m)(t)Σ̂(m)

−
(
τ̂(t)(m)

)2 (
Σ̂(m)

)H (
τ̂(t)(m)Σ̂(m) + (σ̂2)(m)I

)−1
Σ̂(m)

+ ô(t)ô(t)H . (4)

Consequently, the so-called surrogate function reduces to

Qt(φ|φ̂(m)) , Eo(t)|y(t),φ̂(m) {log p(z(t)|φ)}
= −n log |σ2| − n log |τ(t)| − log |Σ| − ‖y(t)− a(θ)s(t)− ô(t)‖2σ2

− 1

σ2
Tr
{

̂o(t)o(t)H
}

+
1

σ2
ô(t)H ô(t)− Tr

{
̂o(t)o(t)H (τ(t)Σ)

−1
}
,
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and due to the i.i.d. assumption stated above

Q(φ|φ̂(m)) =

T∑
t=1

Qt(φ|φ̂(m)) = −nT log |σ2| − T log |Σ|

−
T∑
t=1

(
‖y(t)− a(θ)s(t)− ô(t)‖2σ2 + n log |τ(t)|

+
1

σ2
Tr
{

̂o(t)o(t)H
}
− 1

σ2
ô(t)H ô(t)

+ Tr
{

̂o(t)o(t)H (τ(t)Σ)
−1
})

.

B. M-step

The M-step will carried out by an alternating scheme.
This leads to a closed form expressions for all the unknown
parameters expect, obviously, regarding to θ due to the non
convexity of the cost function for fixed Σ, σ2, {s(t)} , {τ(t)}.
First, let us consider the derivative of Q(φ|φ(m)) w.r.t. τ(t).
After, equating the later to zero, we obtain

τ̂(t)(m+1) =
1

n
Tr
(

̂o(t)o(t)H(Σ̂(m))−1
)

(5)

Regarding the update of Σ̂(m+1), we obtain

Σ̂(m+1) =
n

T

T∑
t=1

̂o(t)o(t)H

Tr
(

̂o(t)o(t)H(Σ̂(m))−1
) (6)

which is a fixed point estimate which is known to convergence
what ever is the initialization start [20]. In order to remove
the ambiguity between the speckle and texture parameter, we
normalize the estimated Σ̂(m+1) [21] as (with some abuse of
notation)

Σ̂(m+1) =
Σ̂(m+1)

Tr
{

Σ̂(m+1)
} .

Now, we focus on the estimation of θ, σ2, {s(t)}t=1,...,T , for
which

Q(φ|φ̂(m)) ∝ −nT log |σ2|−
T∑
t=1

‖y(t)−a(θ)s(t)− ô(t)‖2σ2

Classical calculus (based on [22], [23]) lead to following
concentrated procedure

σ̂2
(m+1)

=
1

n
Tr
(
Π⊥
a(θ̂(m))Eo(t)|y(t),φ̂(m){Ro}

)
(7)

in which

Ro =
1

T

T∑
t=1

(y(t)− o(t)) (y(t)− o(t))
H

and

Eo(t)|y(t),φ̂(m){Ro} = R̂o + Tr{ ̂o(t)o(t)H − ô(t)ô(t)H}

with the adjusted sample covariance matrix given by

R̂o =
1

T

T∑
t=1

(y(t)− ô(t)) (y(t)− ô(t))
H

and the orthogonal projection reads Π⊥a(θ) = I −Πa(θ) with

Πa(θ) = a(θ)a(θ)H

a(θ)Ha(θ)
,

ŝ(t)(m+1) =
a
(
θ̂(m)

)H
a
(
θ̂(m)

)H
a
(
θ̂(m)

) (y(t)− ô(t)) (8)

and
θ̂(m+1) = arg min

θ
Tr
{

Π⊥a(θ)R̂o

}
. (9)

Remark: Extension to the multi-sources scenario
The above analysis is dedicated to the one source case. In
the multi-sources scenario, a straightforward extension is to
replace the update of {s(t)}t=1,...,T , θ and σ2, respectively
by,

(σ̂2)(m+1) =
1

n
Tr
{

Π⊥
A(θ̂(m))R̂o

}
(10)

Ŝ(m+1) =A
(
θ̂(m)

)] (
Y − Ô

)
(11)

θ̂(m+1) = arg min
θ
Tr
{

Π⊥A(θ)R̂o

}
(12)

in which A(θ)] denotes the pseudo inverse of A(θ), Y , Ô
and S represents the concatenation of the incomplete data, the
guess and the emitted signal sources, respectively.

V. NUMERICAL EVALUATIONS

The aim of this section is to evaluate the performance of
the proposed EM based algorithm in the case of a mixture
noise constituted of a Gaussian and spherically invariant
random process. Specifically, we consider a non-uniform linear
array of n = 9 sensors which observes a far field source
emitting a signal from θ = 25 deg during T = 25 snapshots.
The interspacing elements of the array is less than half
a wavelength. Regarding the noise mixture, the spherically
invariant random component is student’t distributed. Namely,
the texture parameter follows an inverse-Gamma distribution
τ ∼ invGamma(a, b), in which the scale and the shape
parameters are given by a = 1.1 and b = 2, respec-
tively. The signal-to-noise ratio is defined as SNR =

‖s‖22
σ2 .

The entries of the covariance matrix Σ are generated by
[Σ]m,n = σ2 × 0.9|m−n|exp(j2π(m− n)). Finally, we recall
that the EM algorithm is an iterative algorithm that attempts
to reach the maximum likelihood estimate which is given as
the maximization of a non-convex and a highly non-linear
cost function (1). Consequently, the initialization step is of
importance to avoid the numerous local minimum. One way is
to use some competitive algorithms, as the RG-MUSIC based
estimator [24], in order to initialize the EM algorithm.

In the following simulation, we consider some classical
algorithms as the MUSIC algorithm [25] and the conventional
ML estimator (i.e., the Gaussian ML estimator), but also, some
recent competitive algorithms as the RG-MUSIC algorithm
[24] and the so-called robust AMLE (Approximated ML
estimator) [26]. Fig. 1 represents the mean square error of
the aforementioned estimators from which we can notice that
the proposed estimator outperforms the MUSIC, conventional
ML estimator, RG-MUSIC and the AMLE. This fact is not
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Fig. 2. Convergence rate of the parameter of interest estimates under
SNR=10dB.

surprising since the proposed estimator relies on the assump-
tion of mixture of Gaussian and spherically invariant random
distributed noise.

Finally, we represent in Fig. 2 the convergence of the
direction of arrival estimates. We can notice that few iterations
are needed in order to obtain a final estimate (less than 10
in our case). This means that the complexity cost of the
proposed algorithm remains acceptable. Specifically, the cost
of each iteration is determined by the costly iteration, i.e.,
minimization of (9). The latter is comparable, in terms of
complexity, to a minimization of a MUSIC based scheme’s
objective function.

VI. CONCLUSION

In this paper we presented a novel direction of arrival
estimation in the context of a noise mixture constituted of
a Gaussian noise, which represents the thermal noise, and a
spherically invariant random process, which reflects in practice
the possible presence of outliers. An EM based algorithm is
proposed in order to maintain a reasonable computational cost
while solving the ML criteria and taking into account the
two mixture components. Numerical simulations reveal that
the proposed algorithm outperforms the state-of-the-art with
only a few number of iterations.
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