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ABSTRACT

This paper presents a new algorithm for improving the estima-
tion of interferometric SAR (InSAR) phases in the context of
time series and phase linking approach. Based on maximum
likelihood estimator of a multivariate Gaussian model, the es-
timation of the InSAR phases is solved using a Block Coor-
dinate Descent algorithm. Compared to the state-of-the-art
approaches, the main improvement lies on the joint estima-
tion of the covariance matrix and the InSAR phases instead
of using a plug-in coherence estimate obtained from the sam-
ple covariance of the data or the modeling of the temporal
decorrelation of the target under observation. Results of syn-
thetic simulations confirm the improvement brought by the
proposed estimator.

Index Terms— Multi-temporal InSAR, Surface Dis-
placement Monitoring, Phase Linking, Maximum Likelihood
Estimator, Block Coordinate Descent algorithm

1. INTRODUCTION

Since the last decade, the research community has been pay-
ing more attention to multi-temporal InSAR techniques, as
satellite SAR images allow for the monitoring of large de-
forming areas with sub-centimeters accuracy [1, 2]. Re-
cently, with the systematic acquisitions of Sentinel-1 A/B
images, regular and operational monitoring of displacement
with multi-temporal InSAR approaches constitutes a preva-
lent subject in numerous studies.

Multi-temporal InSAR approaches have been developed
based on how the signal decorrelation over time can be ac-
counted for. For this, analysing the backscattering properties
of SAR images is needed to define different scatterers. In the
literature, two kinds of scatterers, Permanent Scatterer (PS)
and Distributed Scatterer (DS) are distinguished. The current
state-of-the-art multi-temporal InSAR approaches rely on 1)
processing with point-wise time coherent PS, namely PS In-
terferometry [3], 2) the construction of redundant interfero-
gram networks in DS Interferometry [4]; 3) the combination

of PSI and DSI [5]. PSI approaches have widely been de-
ployed for urban area monitoring, but its application to natu-
ral areas is often limited due to the weak PS points density.
In DSI, Small BAseline Subset (SBAS) approaches use only
small temporal and spatial baselines SAR image pairs in the
interferogram network, with the objective to minimize signal
decorrelation. With these strategies, phase bias has been ob-
served in the displacement estimation in case of long time se-
ries [6]. Another important DSI approach corresponds to the
Phase Linking (PL) approach. The main idea of this approach
is to use all the N×(N−1)/2 interferograms generated from
a time series of N SAR images to yield the best estimate of
N − 1 single referenced phase difference [7]. This approach
allows for a full exploitation of all possible combinations of a
SAR image stack by formally taking the impact of the tempo-
ral decorrelation into account. Most recent advances in multi-
temporal InSAR, e.g. EMI [8] and sequential estimator [9],
have been developed from this baseline approach.

The Maximum Likelihood Estimator (MLE) based PL ap-
proaches (namely MLE-PL for the sake of brevity) present
a statistically optimal estimator for the parameters of inter-
est (e.g. DEM error, displacement rate). Besides properly
weighting in a ML sense all the interferograms to limit spa-
tial and temporal decorrelation, another advantage of MLE-
PL approaches is that the estimates are asymptotically unbi-
ased with a minimum variance by virtue of the properties of
the MLE. In general, the MLE-PL approaches require prior
and reliable information on the coherence to drive the esti-
mation algorithm. Therefore, the performance of MLE-PL
approaches strongly depends on the reliability of the prior co-
herence information.

In the state-of-the-art, MLE-PL approaches [7, 5, 10] do
not solve the exact MLE, as they rely on a plug-in estimate of
the coherence matrix. In this paper, we propose to develop the
MLE-PL by jointly solving the estimation of all parameters
(phases and covariance matrix). The proposed approach is
based on the block coordinate descent (BCD). Additionally,
we derive a Majorization-Minimization algorithm to solve the
PL step. Simulations illustrate the interest of this approach.



2. SAR TIME SERIES MODEL

Fig. 1. SAR time series datacube representation. Sliding window
(in gray) x on dataset of the single-look-complex SAR acquisitions.

A time series of N SAR images are stacked along the tem-
poral and spatial dimensions into a cube (Figure 1). Sliding
window xi (colored in gray) contains a local observation for
N snapshots:

xi = [x0
i , ..., x

N−1
i ]⊤ (1)

Within the scope of this study, we assume that the set {xi}Li=1

with xi ∈ CN , ∀i ∈ [1, L] are distributed scatterers which
are spatially homogeneous over L adjacent pixels. {xi}Li=1

is thus a set of independent and identically distributed (i.i.d.)
vectors. As in the current literature, we assume in this paper
that xi follows a zero-mean complex circular Gaussian distri-
bution with the probability density function (PDF) of

f (x,C) =
1

πNDet(C)
exp

(
−xHC−1x

)
(2)

The second moment of x relates to interferograms which is
given ∀(k, l) ∈ [0, N − 1]2 by

E[xl(xk)∗] = γk,lσkσl exp(j(θl − θk)), (3)

where:

• σ2
n = E[xn(xn)H ] is the variance of xn. The vector of

standard deviation is denoted as σ = [σ0, ..., σN−1]

• γk,l ∈ [−1, 1] is the correlation coefficient between xk

and xl. We denote Γ the matrix with entries [Γ]k,l =
γk,l. [Γ]l,l = 1,∀l ∈ [0, N − 1]

• θn is the phase of image n. θ = [θ0, ..., θN−1].

Equation 3 can be rewritten in matrix form as

E[xxH ] ≜ C = ediag(θ) ((σσ⊤) ◦ Γ)︸ ︷︷ ︸
Σ

ediag(θ)H (4)

where Σ denotes the covariance matrix and with

ediag(θ) =

exp(jθ0) 0
. . .

0 exp(jθN−1)

 (5)

The matrix C fully characterises the InSAR phases and co-
herence. The InSAR principle is then to estimate all the el-
ements of C. Since Σ is unknown in practice, several pa-
pers [7, 5, 10] considered using a plug-in estimate to solve for
the MLE of θ (assuming known Σ). This estimate is usually
|S|, i.e., the entry-wise modulus of the the sample covariance
matrix (SCM). This two-step approach yields good results in
practice, however it is know to be sub-optimal in terms of
MSE. We propose in this paper to jointly estimate the ma-
trix C and the phase difference by solving the MLE with an
iterative approach.

3. NEW PHASE LINKING BASED ON THE
MAXIMUM LIKELIHOOD ESTIMATOR

We reparameterize the equation (4) as

C(Σ,θ) = ediag(θ)Σ ediag(θ)H (6)

The maximum likelihood estimator corresponds to the solu-
tions of the (negative log likelihood) minimization problem

minimize
Σ,θ

L (C (Σ,θ))

subject to Σ real symmetric
θ0 = 0

(7)

where L is the log-likelihood associated with model (2). We
propose a Block Coordinate Descent (BCD) algorithm to
compute the MLE. This corresponds to an algorithm that iter-
atively minimizes the objective w.r.t to each variable (Σ or θ)
while keeping the other fixed.

Update Σ

Let us update the variable Σ by minimizing L with fixed θ.
The problem becomes

minimize
Σ

log |Σ|+Tr
{
Σ−1ediag(θ)HSediag(θ)

}
subject to Σ real symmetric

(8)
where we used the two following relations

C−1 (Σ,θ) =
(
ediag(θ)Σediag(θ)H

)−1

= ediag(θ)Σ−1ediag(θ)H
(9)

log |C (Σ,θ) | = log |Σ| (10)

and dropped the multiplicative constant L. The minimizer is
then obtained as the real part of the modified sample covari-
ance matrix

Σ⋆ = real(ediag(θ)HSediag(θ)) (11)



Update θ

By fixing Σ, the problem is referred to as phase-linking [7] or
phase triangulation [10], which reads

minimize
θ

Tr
{
ediag(θ)Σ−1ediag(θ)HS

}
subject to θ0 = 0

(12)

Let us denote wθ =
[
ejθ0 , · · · , ejθN−1

]T
. We then have the

relation

Tr
{
ediag(θ)Σ−1ediag(θ)HS

}
= wH

θ (Σ−1 ◦ S)wθ. (13)

Let us also denote the set of vector with entry-wise unit norm
as

UN = {w ∈ CN | |[w]i| = 1, ∀i ∈ [[0, N − 1]]}. (14)

From these notations, we need to know how to solve the
generic problem

minimize
w∈UN

wHMw (15)

that allows us to obtain a solution θ⋆ for (12) from the phases
of a solution w⋆ of (15) (when plugging M = Σ−1 ◦ S). If
we restrict w to the constrained set UN , we have the relation

wH(M− λM
maxI)w = wHMw −NλM

max︸ ︷︷ ︸
const.

(16)

Hence, optimizing either the objective in (15) or (16) on UN

will lead to the same solution. The quadratic form wH(M−
λM
maxI)w is concave, thus it can be majorized at point wt by

its first order Taylor expansion

g(w|wt) = 2Re{wH (M− λM
maxI)wt︸ ︷︷ ︸

−w̃t

}+ const. (17)

with equality achieved at wt. Minimizing this surrogate cor-
responds to the problem

maximize
w∈UN

2Re{wHw̃t} (18)

whose solution is w⋆ = PUN
{w̃t}, where PUN

{·} is the op-
erator that project each entry of a vector on the unit com-
plex circle (i.e., entry-wise normalization). Hence, we have
a majorization-minimization algorithm [11] to solve for (15)
(that looks like a modified power method). The algorithm is
summed up in the box Algorithm 1. Notice that this algorithm
can also be used to solve the standard PL formulations, where
M is constructed from a plug-in estimate of Σ [7, 5, 10].

Final algorithm

The final algorithm is shown in the box Algorithm 2 and is
denoted as MLE-PL.

Algorithm 1 MM algorithm for Phase-linking problem (12)
1: Entry: M ∈ CN×N , w0 ∈ UN

2: repeat
3: Compute w̃t = (λM

maxI−M)wt

4: Update wt = PUN
{w̃t}

5: t = t+ 1
6: until Convergence
7: Output: w ∈ UN

Algorithm 2 BCD algorithm for MLE problem (7)
1: Entry: SCM S
2: repeat
3: Update Σ with (11)
4: Call Algorithm 1 with M = Σ−1 ◦ S
5: Update θ from the output of Algorithm 1
6: until Convergence
7: Output: MLEs Σ, θ and C(Σ,θ)

4. SIMULATION

To assess the performance of the proposed algorithm, we gen-
erate a matrix C from (4). The covariance matrix Σ is chosen
as a Toeplitz matrix with coherence coefficient ρ ranging from
0.5 to 0.9. The N SAR phases are generated as random values
in (−π, π), yielding θ = [−1.13, 0.25, 2.37,−1.78,−0.67]
for all Monte-Carlo runs. At last, L i.i.d samples are then
simulated from the distribution (2). A spatial window of L
pixels is ranging from 6 to 100 with N = 5 dates and 1000
number of Monte Carlo simulations.

For comparison, other methods are also tested: 2p-InSAR
is a common InSAR processing in which InSAR phases are
only estimated in spatial dimension and with the use of a mul-
tilooking window. PL is the conventional 2-step phase linking
[10]: M = Σ−1 ◦ S is constructed with the plug-in esti-
mate Σ̂mod = |S| (entry-wise modulus), then problem (15) is
solved to obtain the phases estimates. In our setting, we use
Algorithm 1 to solve (15).

We first test the convergence of the MLE-PL method in
Figure 2 for L = 20 and ρ = 0.5. The cost function related to
(7) is decreasing and reaches convergence after 7 iterations.
In the following part of this study, the number of iterations is
set to 10 to ensure the convergence of the MLE-PL.

Fig. 2. Cost function of the MLE-PL method with L = 20, N = 5,
ρ = 0.5.



For one true InSAR phase, Figure 3 shows the histogram
of the estimates obtained by different methods with N = 5,
L = 20 and ρ = 0.7. All the methods give estimated values
around the simulated InSAR value. The empirical variance of
the MLE-PL and the PL estimates appear lower compared to
the 2p-InSAR one.

Fig. 3. Histogram of InSAR phase estimations obtained by MLE−
PL, PL and 2p-InSAR. L = 20, N = 5, ρ = 0.7.

Figure 4 presents the Mean Squared Error (MSE) of esti-
mated InSAR phases for the different methods and in terms
of the number of pixels within a spatial window of L pixels.
Different values of the coherence coefficient are studied, from
high coherence (ρ = 0.9) to medium coherence (ρ = 0.7) to
low coherence (ρ = 0.5). The MSE of each method decreases
with the number of available samples which is expected. In-
terestingly, we observe that MLE-PL allows for an improve-
ment of the accuracy of the phase estimation compared to PL
or 2p-InSAR in all the considered setups.

Low coherence ρ = 0.5

Medium coherence ρ = 0.7 High coherence ρ = 0.9

Fig. 4. MSE of InSAR estimates using 2p-InSAR, PL and MLE-PL
with Gaussian distributed input data. N = 5, 1000 Monte Carlo
trials.

5. CONCLUSION

In this paper, a new phase linking algorithm based on MLE
was proposed and applied to simulated data. This MLE-PL
algorithm was obtained by jointly solving the estimation of all
parameters (phases and covariance matrix). Additionally, we
derived a Majorization-Minimization algorithm to solve the
PL step that is also suitable to others standard PL approaches.
Simulations illustrated that this new method offers some im-
provement in terms of MSE for various degree of temporal
coherence.
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