
Robust PCA for Through-the-Wall Radar Imaging
Hugo Brehier1, Arnaud Breloy2, Chengfang Ren1, Israel Hinostroza1, and Guillaume Ginolhac3
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Abstract—Through-the-wall radar imaging (TWRI) is an on-
going field of research which aims at investigating the inside of
a building from its outside. In the most common setting, it seeks
to detect or monitor stationary targets. Departing from usual
delay-and-sum techniques, sparse recovery problems have been
proposed to solve this detection problem. These methods rely on
a preprocessing step where an appropriate separation of wall
and target subspaces is first performed to remove the front wall
response. In this work, we explore one-step methods using joint
low-rank and sparse decomposition methods through the Robust
PCA (RPCA) framework. The novelty is a one-step recovery from
a structured inversion problem for which we tailor an Alternating
Direction Method of Multipliers (ADMM) algorithm. We validate
and compare our method on simulations.

Index Terms—Through-the-wall radar, RPCA, detection, in-
version

I. INTRODUCTION

Through-the-wall radar imaging (TWRI) [1] aims at inves-
tigating the inside of a building using electromagnetic (EM)
waves emitted from its outside, making use of their penetrating
properties to pass through walls. Most commonly, a single
room is considered, consisting of a front wall behind which the
radar is placed, and inner walls delimiting the imaged scene
from which we seek to detect and classify targets. TWRI is
useful in both military operations and civilian applications,
such as emergency relief. It is a challenging task as the back-
scattered signal from targets is strongly attenuated by the front
wall. Moreover, it contains strong interferences from the front
wall as well as clutter from inner walls. The signal is also
distorted by multipath which complicates the task of target
detection.

Traditional techniques to create detection maps in radar
comprise Generalized Likelihood Ratio Tests (GLRTs) [2],
to test the hypothesis of a target being present at a given
position, as well as delay-and-sum beamforming approaches,
such as the Synthetic Aperture Radar (SAR) algorithm of
Back Projection (BP) [3]. However, this does not allow for
the physical characteristics of the imaged scene to be taken
into account (through wall effects, multipath).

More recent works have proposed a structured recov-
ery/regression problem through a dictionary mapping the sig-
nal to a sparse vector [4], [5]. Leveraging advances in signal
processing, such as Compressing Sensing (CS) [6], allows to
accelerate the recovery process by using less data. Moreover,
theses methods build a more precise model of the back-
scattered signals. Still, a drawback of these methods is that a

preprocessing step is needed to remove the front wall echoes
[7], [8]. It assumes the subspaces of front wall and target
backscatted signals to be non-overlapping, which may not
always be the case. The wall removal preprocessing step then
consists in projecting the received signal onto the orthogonal
complement of the wall’s response subspace, which may also
cancel some target returns. Clutter from inside of the imaged
scene is also not modelled which may impede detection in a
natural setting (i.e. without absorbing materials). This issue is
linked to the fact that the rank of the interference also requires
to be estimated within the preprocessing step.

We consider a one-step method based on joint low-rank
and sparse matrix recovery methods, introduced in the Robust
PCA (RPCA) framework [9], [10]. It has been extended to
include a dictionary for the sparse component in [11]. In our
context, this allows a one-step recovery of target positions in
the sparse component with the interferences captured by the
low-rank component. This joint recovery approach for TWRI
applications has been investigated in [12]–[14].

As suggested in [15], we start in the footsteps of RPCA
‘with dictionary’ (dRPCA) [11], where a linear operator is
applied on the sparse component. Our model for this dictionary
follows the one of [5]. Unfortunately, dRPCA is not able
to recover the target positions in our simulations setting due
to the highly structured sparse component. Then, to achieve
the recovery of target positions, we propose a reformulation
of dRPCA through a natural Kronecker product structured
model which is solved with a corresponding modified ADMM
algorithm [16].

In this paper, we add multipath considerations and reshape
the data in its matrix form following the RPCA setting. As
done in previous sparse recovery methods [17], we make use
of a ℓ2,1 norm regularization to take multipath into account. In
RPCA (without dictionary), this has been studied as ‘outlier
pursuit’ [18] and shown to well recover the column support of
the sparse component and the column space of the low-rank
component. We also make use of CS to reduce data usage and
speed up calculations, albeit naively. We validate and compare
our model on simulations which confirmed that our proposed
method correctly recovers target positions.

The paper is organized as follows: in Section II the signal
model is introduced. Limitations of dRPCA are pointed out
and a new method is proposed in Section III, leading to
a modified RPCA problem. Finally, Section IV studies the
performance of our new method in comparison with the



method of [5] which we denote SR-CS, as well as BP.
Let A be a complex-valued matrix with (i, j)th entry be

denoted: [A]i,j = aij , ith column be denoted ai and ith row
be: Ai,: . Further on, we denote by ∥·∥p the entrywise ℓp norm
of a matrix. We denote the Frobenius norm as ∥·∥F . The ℓ2,1-

norm is ∥A∥2,1 =
∑

i

(∑
j |aij |2

)1/2

=
∑

i∥Ai,:∥2. Denote

A
SVD
= UΣVH the SVD of A. Then, the nuclear norm of A

is ∥A∥∗ = ∥diag (Σ)∥1 i.e. the sum of the singular values.

II. THROUGH THE WALL MODEL

We consider a homogeneous wall of thickness d and dielec-
tric constant ϵ located along the x-axis at a distance zoff to the
SAR transceivers. Consider a N -element array with the nth

transceiver located at xn = (xn,−zoff ) sending a stepped-
frequency signal of M equispaced frequencies over the band
[ω0;ωM−1], ωm = ω0 + m∆ω, m = 0, 1, . . . ,M − 1
with ∆ω the frequency step. The reflections from targets are
measured only at the same transceiver position.

The received signal backscattered from targets and the front
wall, at the nth transceiver for the mth frequency can be
formulated as [5]:

y(m,n) = σw exp (−jωmτw)

+

R−1∑
i=0

P−1∑
p=0

σ(i)
p exp(−jωmτ (i)p,n)

(1)

where P is the number of point targets and R trajectories of
multipath, σw is the complex-valued reflectivity of the wall
and τw =

2zoff

c is the round trip propagation delay from
SAR transceiver to wall, with c the velocity of electromagnetic
wave in the air medium. Moreover, σ(i)

p is a complex-valued
attenuation coefficient which factors in the different losses for
the ith multipath to the pth target: the wall refraction loss,
path loss in air and wall, and target reflection loss. The two-
way propagation delay from nth transceiver to the pth target
along the ith multipath is denoted τ

(i)
p,n. The direct trajectory

through the front wall can be computed by numerical methods
[19], which allows to evaluate the associated wave propagation
delay.

Assume the scene to be imaged is divided into a grid of
dimension Nx × Nz in crossrange vs downrange. We now
denote τ

(i)
nxnz,n the propagation delay to the (nx, nz)

th pixel
for the ith multipath scheme and the nth transceiver position.
We can write the received signal through a dictionary Ψ which
maps the whole scene. For the ith multipath scheme and the
nth transceiver position, its mth row is denoted:

[Ψ(i)
n ]m = [exp (−jωmτ

(i)
00,n) . . . exp (−jωmτ

(i)
(NxNz−1),n)]

(2)

This gives a vector form to the signal received at the nth

position:

yn = l+ [Ψ(0)
n Ψ(1)

n . . .Ψ(R−1)
n ]︸ ︷︷ ︸

=Ψn


r(0)

r(1)

...
r(R−1)


︸ ︷︷ ︸

=r

=⇒ yn = l+Ψnr

(3)

where l ∈ CM contains the returns of the front wall and
r(i) ∈ CNxNz is the scene vector associated to the ith

multipath propagation scheme: containing the backscattered
signal amplitudes, it is non-zero only when a target is located
at a given position in the grid. Ψ(i)

n ∈ CM×NxNz is the dic-
tionary mapping from received signal to target positions, with
propagation delay computed according to the ith multipath
scheme from the nth transceiver position.

SR-CS requires that the front wall echoes have been filtered
by some preprocessing. This is equivalent to considering that
l = 0. Thus, the problem is:


y0

y1

...
yN−1

 def
= y = [Ψ(0)Ψ(1) . . .Ψ(R−1)] r (4)

with the submatrices composing the dictionary constructed
by considering one multipath at a time (Ψ(i) =

[Ψ
(i)T
0 Ψ

(i)T
1 . . .Ψ

(i)T
N−1]

T is the sub-dictionary associated to
the ith multipath). The recovery of r through this inversion
problem, with a sparsity penalization, is a staple of sparse
recovery/regression:

min
r
∥unvec(r)∥2,1 s.t. y = [Ψ(0)Ψ(1) . . .Ψ(R−1)] r (5)

with unvec(r)
def
= [r(0)r(1) . . . r(R−1)] ∈ CNxNz×R.

The ℓ2,1-norm penalty is used in order to promote block-
sparsity across rows. Indeed, all scene vectors represent the
same physical scene, although they include different propaga-
tion paths. Multipath ghosts appear as a response to one single
target when multiple unstructured activations occur rather
than a unique whole-row activation, i.e. factoring multipaths
in Ψ. Such structured penalty will thus favor factoring out
these ghosts. An added compressive matrix, selecting random
frequencies and transceiver positions, can be added for CS to
be used.

To remove the front wall returns l and recover the target
positions r in one-step, we do not consider a long vector
concatenating all observations, but stack them in a matrix. We
can concatenate the observations {yi}N−1

i=0 in a matrix as:



[y0 . . .yN−1]︸ ︷︷ ︸
=Y

= [l . . . l]︸ ︷︷ ︸
=L

+

[Ψ0 . . .ΨN−1]︸ ︷︷ ︸
=Ψ


r 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 r


︸ ︷︷ ︸

=S

=⇒ Y = L+ΨS = L+Ψ (IN ⊗ r)

(6)

where Y ∈ CM×N is the data matrix, L ∈ CM×N is a low-
rank matrix of front wall returns, Ψ ∈ CM×NxNzRN is a
dictionary mapping to the target returns and S ∈ CNxNzRN×N

is the associated sparse matrix containing the scene vector.
The setting leads us to consider sparse and low-rank matrix

decomposition methods.

III. STRUCTURED RPCA FOR TWRI

A. Problem formulation

From the model in the previous section, TWRI can be for-
mulated as a low-rank plus (structured) sparse matrix recovery
from noisy observations.

The decompositon of a matrix in low-rank and compressed
sparse components is developed in [11], which we already
referred to as dRPCA. It builds upon RPCA, whose original
goal is to retrieve a low-dimensional subspace in which lie the
data points, except for some outliers which are accounted for
in a sparse matrix. It makes use of the ℓ1 and nuclear norms
which are known to be the convex envelopes of the ℓ0 ‘norm’
(the number of non-zeros entries) and rank of a (bounded)
matrix [20]. It establishes recovery conditions of this convex
relaxation, which can be solved through ADMM. The problem
of dRPCA is:

min
L,S

∥L∥∗ + λ∥S∥1

s.t. Y = L+ΨS
(7)

which is shown to allow for the recovery of both components
under some constraints.

In our application context, the matrix S is structured, which
can be directly accounted for in the problem formulation.
In fact, our experiments show that such reformulation is
necessary because the composite block diagonal structure of S
in (6) implies a strong sparsity pattern. Recovering this pattern
from the unstructured formulation (7) causes convergence
issues and leads to a failure of the target detection. From the
model in (6), we therefore propose the following formulation:

min
L,r

∥L∥∗ + λ∥unvec(r)∥2,1

s.t. Y = L+Ψ (IN ⊗ r)
(8)

In the following, we define R = unvec(r) for ease of notation.

B. ADMM algorithm

We consider solving (8) through the Alternating Direction
Method of Multipliers (ADMM) [16]. The augmented La-
grangian problem associated with (8) is:

l(L, r,U) = ∥L∥∗ + λ∥R∥2,1
+ ⟨U,Y − L−Ψ(IN ⊗ r)⟩

+
µ

2
∥Y − L−Ψ(IN ⊗ r)∥2F

(9)

where U is the matrix of Lagrange multipliers associated
with the constraint, λ is the sparsity regularization parameter
and µ is the augmented Lagrangian penalty parameter. The
following subsections will detail the update of each variables
for minimizing l(L, r,U).

1) Update L: Assuming r and U fixed, the L-minimisation
step corresponds to the problem:

min
L

∥L∥∗ + ⟨U,Y − L−Ψ(IN ⊗ r)⟩

+
µ

2
∥Y − L−Ψ(IN ⊗ r)∥2F

(10)

Its resolution is identical to the one of RPCA, which is
obtained by the so-called singular value soft thresholding
operator, the proximal [21] of the nuclear norm (with thresh-
old λ), denoted Dλ. In fact, this is the ℓ1-norm proximal
(the so-called soft-thresholding operator S) applied on the
singular values of a matrix. Recall A SVD

= UΣVH , so that:
Dλ(A) = USλ(Σ)VH , with the soft-thresholding operator,
defined element-wise by: [Sλ(A)]i,j = sgn(aij) (|aij | − λ)+
where sgn(aij) is the (complex) sign function and (x)+ =
max(x, 0). The corresponding update for problem (10) is:

Lk+1 = D1/µ(Y −Ψ(IN ⊗ rk) + µ−1Uk+1). (11)

2) Update r: Assuming L and U fixed, the r-minimisation
step is formuated as:

min
r

λ∥R∥2,1 + µ ⟨Γ,Ψ(IN ⊗ r)⟩+ µ

2
∥Ψ(IN ⊗ r)∥2F

(12)

with Γ = L−Y − µ−1U. For the linear term, notice that:

Ψ(IN ⊗ r) =

 (Ψ0)0,:r . . . (ΨN−1)0,:r
...

. . .
...

(Ψ0)M−1,:r . . . (ΨN−1)M−1,:r

 (13)

with Ψi,: = [(Ψ0)i,:(Ψ1)i,: . . . (ΨN−1)i,:]. This leads to:

⟨Γ,Ψ(IN ⊗ r)⟩ = Tr (ΓHΨ(IN ⊗ r))

= vec (Γ)
H
vec (Ψ(IN ⊗ r))

=

M−1∑
i=0

N−1∑
j=0

(γij(Ψj)i,:)︸ ︷︷ ︸
=nH

r = ⟨n, r⟩
(14)



Algorithm 1 ADMM for RPCA with a sparse vector and
Kronecker structure (λ, µ,Y,Ψ)

1: L0,U0 ← 0M×N

2: r0 ← 0NxNz×1

3: P =
∑N−1

i=0 ΨH
i Ψi

4: t = 1/λmax(µP)

5: repeat (for k = 0, 1, . . .):
6: Uk+1 = Uk + µ(Y − Lk −Ψ(IN ⊗ rk))
7: Lk+1 = D1/µ(Y −Ψ(IN ⊗ rk) + µ−1Uk+1)
8: Γ = Lk+1 −Y − µ−1Uk+1

9: n =
∑M−1

i=0

∑N−1
j=0 (Γ)i,j [(Ψj)i:]

H

10: repeat (for q = 0, 1, . . .):
11: Rq+1 = Tλt(unvec(rq − tµ(n+Prq)))
12: rq+1 = vec (Rq+1)
13: until stopping criterion is met
14: rk+1 ← rq+1

15: until stopping criterion is met

16: L← Lk+1

17: r← rk+1

where γij = [Γ]i,j . Concerning the quadratic term, we have:

∥Ψ(IN ⊗ r)∥2F = Tr (ΨHΨ(IN ⊗ r)(IN ⊗ rH))

= Tr (ΨHΨ(IN ⊗ rrH))

=

N−1∑
i=0

Tr (ΨH
i Ψirr

H) = rHPr

(15)

where P =
∑N−1

i=0 ΨH
i Ψi is positive-semidefinite matrix. We

get that the r-minimization step (12) can be written as:

min
r

l(L, r,U) = λ∥R∥2,1 + µ ⟨n, r⟩+ µ

2
rHPr (16)

Thus, the r-minimization step is a sum of convex func-
tions with known gradients. This r-minimization step can
be achieved through (possibly accelerated) proximal gradient
descent [21, Section 4.2]. At iteration q:

Rq+1 = Tλt(unvec(rq − tµ(n+Prq))) (17)

where Tλ(·) denotes the proximal operator of the ℓ2,1 norm,
defined row by row, by: [Tλ(A)]i,: =

(
1− λ

∥Ai,:∥2

)
+
Ai,:.

3) Update U: This is a standard ADMM step of dual
ascent: Uk+1 = Uk + µ(Y − Lk −Ψ(IN ⊗ rk))

The whole method is summarized in Algorithm 1.

IV. SIMULATIONS

We test our method on simulated data. The scene is 4.9×5.4
m in crossrange (x-axis) vs downrange (z-axis). The stepped-
frequency signal is composed of 728 frequencies from 1 GHz
to 3 GHz. The SAR moves along the x-axis between each
acquisition with 67 different positions overall. Its track is
centered over the x-axis, thus it starts around x = 1.82 and
ends at x = 3.05. The front wall (which is parallel to the SAR
displacement axis) is at a standoff distance to the SAR of 1.2

m, of thickness 0.5 m, of relative permittivity ϵ = 4.5. The
front wall returns have around 40 dB overall attenuation. Two
targets are situated at (x, z) coordinates (2, 2) and (2.5, 4) with
overall attenuation around 70 dB for the direct path (this loss
includes free space path loss, losses through the front wall as
well as losses due to the target) based on [1, Section 2.2]. For
every other multipath, we add an extra attenuation coefficient.
The Signal to Noise Ratio (SNR) is set to 20 dB with noise
modelled by a complex Gaussian white noise.

Fig. 1: Result of BP

Fig. 2: Result of SR-CS (λ = 0.4)

Fig. 3: Result of kRPCA (λ = 40, µ = 10)



With some multipath (wall ringing), a standard SAR method
such as BP achieves a result as seen on Figure 1. The wall
returns are overwhelming.

The method of SR-CS achieves the result seen on Figure
2. The wall returns have been mitigated by the subspace
projection method of [7], although without noise suppression
nor mean signal removal as it degraded performance. A
compressive matrix is used to select 25% of frequencies. The
true target positions are indicated by the red rectangular boxes.
The results of our method, which we denote kRPCA, is shown
on on Figure 3 with a compressive matrix used to select
frequencies, with 25% being kept.

For more reprensative results, we run a Monte-Carlo simula-
tion over a range of SNR. We use 100 draws at each SNR, and
stop each method at iterate k when two iterates are close by:∥∥rk − rk−1

∥∥
F
≤ 1e−6 . This generally amounts to around 20

iterations for both algorithms. The error evaluated is defined as
the count of false alarms plus non-detections. To this end, we
consider blocks of 2 by 2 pixels to allow for small clusters of
pixels and set a detection threshold to 10 % the highest pixel
intensity. The hyperparameters are set to a value manually
found to be optimal and remain constant over all draws. We
observe in Figure 4 that our method performs better than SR-
CS, as our error tends to zero while SR-CS stays around
one. The likely reason is that the ghost target (visible on the
previous images) is difficult to erase for SR-CS.

15 20 25 30 35 40 45 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0 SR-CS
kRPCA

Fig. 4: Estimated error as a function of SNR (dB)

Also note that in order to keep a readable scale, we do not
show smaller SNR values as the error of SR-CS goes in the
hundreds whereas kRPCA remains below ten.

V. CONCLUSIONS

In this work, we proposed a novel one-step method for
Through-the-Wall Radar Imaging. Formulated as a structured
recovery problem in the form of a sparse plus low-rank
decomposition, it is solved through a modification of the so-
called Robust PCA ‘with dictionary’ (dRPCA). In this tailored
adaptation, we make use of the Kronecker product structure
of the sparse component, as well as its row-wise sparsity, to
achieve its recovery. Simulations showed that our proposed
method is able to achieve recovery of target positions with
lower SNR than SR-CS [5]. Further performance evaluation of

our method will be investigated on a real dataset with possibly
unmitigated clutter.
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