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ABSTRACT
This paper proposes an algorithm for phase differences esti-
mation in multi-temporal InSAR. The proposed approach is
based on covariance fitting estimation and the majorization-
minimization algorithm. Experiments with Sentinel-1 images
of Mexico City demonstrate that the proposed approach com-
pares favorably to the state-of-the-art phase linking (i.e., max-
imum likelihood-based approaches) when the sample support
is low (i.e., when the number of pixels in the multi-look win-
dow cannot scale with the number of SAR images). Hence,
the proposed approach can improve the spatial resolution of
phase difference estimation in case of large SAR image time
series.

Index Terms— Multi-temporal InSAR, Surface Dis-
placement Monitoring, Phase Linking, Least Squares Estima-
tor, Maximum Likelihood Estimator

1. INTRODUCTION

Multi-temporal interferometric SAR (MT-InSAR) techniques
have been exploited for more than 20 years. Beginning
with the concept of Permanent Scatterer Interferometry (PSI)
[1, 2, 3] where stable and high coherent point-wise scatterers
are exploited to reduce target decorrelation (i.e., temporal and
geometrical decorrelation), Distributed Scatterer Interferom-
etry (DSI) approaches were then introduced to increase the
estimation density in non-urban area. The first effort to ad-
dress target decorrelation utilizing randomly distributed scat-
terers (DS), characterized by shared statistics, is known as
Small BAseline Subset (SBAS) [4]. By computing interfer-
ograms formed from pairs of images sharing small temporal
and spatial baseline, SBAS creates a redundant network of
interferograms to retrieve the phase consistency’s lost due to
the use of spatial/multilook window. SBAS though increases
the estimation density, suffers from systematic signal which
is short-lived and decays with the temporal baseline [5].

Another popular concept in DSI group is Phase Linking
(PL), which “squeezes” all the possible combinations of a
time series of N co-registered Single Look Complex (SLC)
SAR images into a vector of N − 1 phase differences (with
reference to a single phase) by imposing the phase closure

property. A popular approach consists in properly weight-
ing each interferogram based on target statistics in a maxi-
mum likelihood estimation (MLE) scheme [6, 7, 8, 9, 10].
In this setup, an algorithm that we will refer to as MLE-PL
performs the phase estimation by solving the MLE of a Gaus-
sian model whose covariance matrix satisfies the phase clo-
sure property. The MLE-PL approaches are known to provide
a statistically efficient estimator since it is asymptotically un-
biased with minimum variance to Cramér-Rao Lower Bound
(CRLB). However, this algorithm assumes that the coherence
information is known. If not estimated jointly [11, 12], it
is usually replaced by a plug-in estimate in practice. This
can lead to degraded performance [13], especially when the
sample support is low, i.e., when the number of pixels in the
multi-look window does not scale well with the number of
SAR images in the temporal stack. To mitigate this effect,
one usually relies on improved plug-in estimates of the co-
variance matrix using regularization, such as diagonal load-
ing, or low-rank (LR) approximations [7, 8, 10]. However,
these regularizations rely on auxiliary parameters that can be
hard to automatically tune in a manner suited to all datasets.
A second issue is that MLE-PL relies on a covariance ma-
trix inversion, which can be highly demanding in terms of
computational load. This is particularly challenging given the
massive volume of short-revisit time and global coverage ac-
quisitions of InSAR imagery provided by many present and
upcoming satellite missions.

To address the aforementioned issues, this work con-
siders a counterpart to the MLE-PL formulation through a
least-squares covariance fitting formulation (referred to as
LS-PL), which has, to the best of our knowledge, not been
extensively investigated in the literature. This formulation
has the main advantage of not relying on the inverse of
the coherence matrix. It can thus avoid inaccuracies due
to the poor conditioning of the plug-in estimate without
requiring a regularization process. Additionally, we derive
a majorization-minimization algorithm to solve LS-PL
with a low computational load. Though not enjoying the
theoretical asymptotic properties of MLE-PL approaches,
experiments in this work will show that the LS-PL formula-
tion compares favorably in terms of computational cost and



Fig. 1. SAR time series datacube representation. Sliding window
(in gray) x on dataset of the SLC SAR acquisitions.

in performance at low sample support (small spatial window).

2. CONVENTIONAL PHASE LINKING VS
COVARIANCE FITTING

2.1. Multi-temporal InSAR covariance structure

For a multivariate pixel window of N co-registered SAR im-
ages (as represented in Figure 1), we consider a local patch of
L pixels denoted as {xi}Li=1, with xi ∈ CN , ∀i ∈ [[1, L]].
Assuming that {xi}Li=1 is a homogeneous patch of L pix-
els sharing the same scattering and statistical properties (i.e.
DS characteristics) and thus, the covariance matrix C. Given
the statistics of interferometric data behavior, the first and
second-order moments of x are

E [xn] = 0, ∀n ∈ [[1, N ]]

E
[
xk(xl)∗

]
= υk,lσkσle

j(θk−θl), ∀(k, l) ∈ [[1, N ]]2
(1)

where

• σ2
n = E

[
xn(xn)H

]
is the variance of xn. We denote

the vector of standard deviations σ = [σ1, · · · , σN ].

• υk,l ∈ [0, 1] is the coherence coefficient between xk

and xl. We denote Υ the coherence matrix, with entries
[Υ]k,l = υk,l.

• θn is the phase at instant n. We denote the phase vector
θ = [θ1, · · · , θN ], and the corresponding vector of
complex arguments is

wθ =
[
ejθ1 , · · · , ejθN

]
∈ TN , (2)

where TN = {w ∈ CN | |[w]i| = 1, ∀i ∈ [[1, N ]]}
is the N -torus of phase-only complex vectors. By con-
vention, to avoid ambiguity, we will use the reference
θ1 = 0, which is equivalent to [wθ]1 = 1.

Algorithm 1 MM algorithm for LS-PL problem (8)
1: Entry: M ∈ CN×N , w1 ∈ TN (starting point)
2: repeat
3: Compute w̃t = Mwt

4: Update wt = PTN
{w̃t}

5: t = t+ 1
6: until convergence
7: Output: w ∈ TN

Rewrite the covariance structure in (1) in matrix form, we
have

E
[
xxH

] ∆
= C = diag(wθ) ((σσ

⊤)⊙Υ)︸ ︷︷ ︸
Ψ

diag(wθ)
H . (3)

This can also be written as a modulus-argument decom-
position, i.e.:

C = mod(C)⊙ arg(C)
∆
= Ψ⊙ (wθw

H
θ ), (4)

2.2. MLE-PL problem

Under the common hypothesis that x follows a complex
circular Gaussian distribution, state-of-the-art PL estimates
phase differences θ by minimizing the negative log likelihood
of the dataset with a given prior estimate of Ψ as such

LG(C) ∝ Tr
{
C−1S

}
+ log |C|+ const. (5)

where S = 1
L

∑L
i=1 xix

H
i is the sample covariance matrix

(SCM) of x.
By rewriting (5) with the structure in (4) and assumed

known Ψ, the MLE-PL problem then reads

minimize
wθ∈TN

wH
θ (Ψ−1 ⊙ S)wθ (6)

In the literature, Ψ is substituted by an estimate which is the
modulus of SCM, i.e. mod(S). [7, 8, 9]. The literature also
generally consider the potential use of low-rank regulariza-
tion to enhance the accuracy of this plug-in (see, e.g., [7]).
This approach will be referred to as MLE-PLLR.

2.3. Least-squares covariance fitting

Notice that MLE-PL relies on a matrix inversion of the SCM,
which could be inaccurate at low sample support, as well as
computationally demanding. To address these issues, we con-
sider an alternate formulation of the phase estimation prob-
lem. Given a plug-in estimate of the covariance matrix, de-
noted Ĉ that does not satisfy the phase structure as in (4), we
seek best projection approach in some sense. First, denote the
modulus of Ĉ as

Ψ̂
∆
= mod(Ĉ). (7)



The least square covariance fitting estimator for the structure
in (4) corresponds to the minimization problem

minimize
wθ∈TN

||Ĉ− diag(wθ)Ψ̂diag(wθ)
H ||2F (8)

The objective function in (8) is simplified as

fLS
Ĉ

= ||Ĉ− diag(wθ)Ψ̂diag(wθ)
H ||2F

= −2 Tr
(
C diag (wθ) Ψ̂ diag (wθ)

H
)
+ const.

= −wH
θ (Ψ̂⊙ Ĉ)wθ + const.

(9)
Denote M = Ψ̂ ⊙ Ĉ, we can turn the problem into a

generic form

minimize
w∈TN

−wHMw (10)

A cost-efficient majorization minimization (MM) algorithm
[11, 14] is subsequently derived to solve for (9).

Since M ∈ S+
N , the quadratic form −wHMw is a con-

cave function which is majorized at its tangent wt by its first
order Taylor expansion

g(w|wt) = −2Re{wH Mwt︸ ︷︷ ︸
w̃t

}+ const. (11)

Minimizing this surrogate function on TN corresponds to this
maximization problem

maximize
w∈TN

Re{wHw̃t} (12)

The solution of this problem is the entry-wise projection of
the vector w̃t on a unit complex circle which reads w⋆ =
PTN

{w̃t}. The resulting MM algorithm to solve for (9) is
summed up in the table 1. This MM algorithm is ensured
favorable convergence properties [15], notably characterized
by a monotonic decrement of the objective function at every
iteration.

3. REAL DATA

In order to evaluate the performance of the novel LS-PL al-
gorithm, we employed a dataset of SLC Sentinel-1 imagery,
acquired between 03/07/2019 and 27/06/2020, encompassing
approximately 14 × 22 km2 around Mexico City which is
known for its substantial subsidence rate [16]. To better ac-
cess to the signal decorrelation effect on the dataset, we apply
3 approaches (i.e., MLE-PL, MLE-PLLR, and LS-PL) with a
sliding window of L = 64 pixels on a short temporal base-
line of 15 acquisitions and a longer temporal baseline of 31
acquisitions, with a temporal resolution of 12 days. Figures
2 and 3 present the results for N = 15 and N = 31 dates,
respectively.

We observe that MLE-PL provides a noisy output, which
is due to its reliance on |S|−1 (that requires L ≫ N to be

accurately estimated). This can be compensated by the use
of a rank-regularized plug-in estimate, as seen from the out-
put of MLE-PLLR. Conversely, LS-PL can produce visibly
improved interferograms without regularization of S, thereby
obviating the requirement for additional regularization and
parameter tuning.

In parallel, we also notice that MLE-PL and LS-PL are
both solved using an MM algorithm with equivalent com-
plexities for each iteration. However, we experienced a faster
convergence of LS-PL (roughly 20 iterations needed on aver-
age) compared to MLE-PL and MLE-PLLR (roughly 200 it-
erations needed on average). Thus, this formulations appears
also advantageous in terms of computational time.

4. DISCUSSION AND CONCLUSION

In this study, we proposed an alternate formulation of phase
linking through a least-squares fitting of a phase-structured
covariance matrix, rather than the more usual MLE approach.
An MM algorithm was proposed to compute the correspond-
ing phase estimates. Experiments on real world InSAR data in
terms of accuracy at low sample support, and computational
load.
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