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In this paper, we consider the problem of low dimensional signal subspace estimation in a Bayesian con- 

text. We focus on compound Gaussian signals embedded in white Gaussian noise, which is a realistic

modeling for various array processing applications. Following the Bayesian framework, we derive two

algorithms to compute the maximum a posteriori (MAP) estimator and the so-called minimum mean

square distance (MMSD) estimator, which minimizes the average natural distance between the true range

space of interest and its estimate. Such approaches have shown their interests for signal subspace esti- 

mation in the small sample support and/or low signal to noise ratio contexts. As a byproduct, we also

introduce a generalized version of the complex Bingham Langevin distribution in order to model the

prior on the subspace orthonormal basis. Finally, numerical simulations illustrate the performance of the

proposed algorithms.

1. Introduction

Subspace estimation is an ubiquitous problem in signal pro- 

cessing, as it is often required to infer the low-dimensional space 

where information lies in. It is considered as the cornerstone 

of a plethora of applications and algorithms such as PCA [1] , 

DoA estimation [2] , interference cancellation [3,4] , reduced rank 

adaptive filtering [5] and signal detection [6] . Nevertheless, the 

subspace estimation problem becomes a challenging problem 

in the presence of non-standard conditions such as low sample 

support, low signal to noise ratio (SNR), non-Gaussian observations 

or presence of outliers in the training set. 

Most commonly, the signal subspace is estimated through the 

strongest eigenvectors of the eigenvalue decomposition (EVD) 

of the sample covariance matrix (SCM). This corresponds to the 

maximum likelihood estimator (MLE) for the classical model with 

additive white Gaussian noise. This estimator provides an accurate 

estimator for high SNR and/or for large number of samples. Never- 

theless, it shows its limits outside these asymptotic regimes. This 

estimator is also known to be sensitive to missmodeling, e.g., pres- 

ence of outliers or non-Gaussian observations. A possible solution 

to ensure better performance in these contexts is to incorporate 

a prior knowledge into the estimation process. In a Bayesian 

context, a prior distribution of the subspace orthonormal basis can 

∗ Corresponding author.

E-mail address: 36010449@parisnanterre.fr (R.B. Abdallah).

be assumed in order to overcome the aforementioned drawbacks. 

This approach yields estimators such as the maximum a posterior 

(MAP) [7] or the minimum mean square distance (MMSD), which 

minimizes the expected distance between the true projection 

matrix and its estimate [8,9] . This is an intuitively appealing 

method, as it is based on a natural metric in the complex Grass- 

mann manifold [10] , i.e., the set of P -dimensional subspaces in C N 

(where P is the rank of subspace and N denotes the dimension of 

the observation space). In the context of subspace estimation, the 

MMSD has been introduced in [8,9] . More specifically, [9] derives 

a practical formulation of the MMSD estimators when the sub- 

space of interest is parameterized by its orthonormal basis. This 

formulation is then used in [9] to propose MMSD estimators for 

two data models (namely, linear and covariance models) involving 

an uniform prior for the sources distribution. In [11] , these results 

have been extended to a subspace parameterized by its CS de- 

composition. In [12] and [13] , the authors have recently extended 

these concepts to Bayesian non-parametric framework in order to 

adaptively select the rank of the subspace to be estimated. 

In this paper, we focus on the context of sources following 

a compound Gaussian (CG) distribution [14] embedded in white 

Gaussian noise [15] . This choice is motivated by the fact that 

the CG distribution has been considered in many modern robust 

signal processing applications, as it can account for local power 

fluctuations and presents good agreement to several real data 

set [16,17] . Note that this family covers a large panel of well 

known distributions, notably heavy-tailed ones, such as Student 



t -, K -, and Weibull distributions (cf. [16] and references therein). 

Hence, the considered model can accurately describe clutter (or 

power-fluctuating sources) plus thermal noise observations, which 

are common in plethora of signal processing application. As an 

example, this model has been used for detection in heteroge- 

neous environment [18,19] and for robust structured covariance 

matrix estimation in [15,20] . Specifically, concerning the subspace 

estimation problem [21,22] , proposed MLE algorithms for this 

context, and estimation bounds were derived in [23] . However, 

these studies were never brought to a Bayesian context, in the 

sense that they did not assume a prior on the subspace of interest. 

In this paper, we fill this gap by deriving new Bayesian es- 

timators in the context of CG distributed sources embedded in 

white Gaussian noise. First, our development requires to extend 

the distributions used in [9] to the case of data with com- 

plex entries. To this aim, we introduce a generalization of the real 

Bingham–Langevin (also referred to as Bingham–von-Mises–Fisher) 

distribution and we propose a practical sampling method adapted 

to the proposed distribution. Second, we develop an algorithm to 

compute the MAP estimator for the proposed model based on the 

Majorization–Minimization (MM) algorithm [22] . Third, we derive 

a Gibbs-sampler based algorithm to compute the MMSD estimator, 

which follows the framework of [9] (that considered a uniform 

prior on the sources). 

Finally, numerical simulations show that the inclusion of a 

Bayesian prior on the subspace orthonormal basis can significantly 

improve the performance of the estimation process. The design of 

this prior depends, of course, on the considered application and 

comes from appropriate physical considerations/models, which is 

out of the scope of this paper. 

The paper is organized as follows: Section 2 gives an overview 

on the background theory. Section 3 presents the data model 

and problem statement. Then, Section 4 deals with the pro- 

posed Bayesian estimators. In Section 4.1.1 , numerical simulations 

are shown in order to assess the performance of our proposed 

estimators. 

The following notations are adopted along this paper: italic 

indicates a scalar quantity, lower case boldface indicates a vector 

quantity and upper case boldface a matrix. { w n } N n =1 denotes the
set of elements w n , with n ∈ [[1, N ]], this writing will be contracted 

in { w n } if there is no ambiguity. Re{.} stands for the real part of a 

complex number. The superscripts H and T denote, respectively, the 

transpose-conjugate and the transpose operators. Tr{.} and etr{.} 

stand, respectively, for the trace and the exponential of the trace of 

a given matrix. det(.) is the determinant operator. diag(.) denotes a 

diagonal matrix built from a set of elements (or a vector). ∝ stands 

for “proportional to” and 
d = stands for “has the same distribution 

as”. 
EVD = allows to define the EVD of a given matrix, and a similar 

notation is adopted for the SVD and TSVD (thin-SVD). CN ( µ, Ä) is 

the complex normal distribution of mean µ and covariance matrix 

Ä. unif(0, 1) denotes the continuous uniform distribution at the 

two boundaries 0 and 1. H 
++ 
N ( H 

+ 
N ) is the set of N ×N positive

(semi-)definite Hermitian matrices. U N P = 
{
U ∈ C N×P | U H U = I P

}
is 

the set of N × P semi-unitary matrices, i.e., tall matrices whose 

columns form an orthonormal basis. 

2. Compound Gaussian and complex generalized Bingham

Langevin distributions 

This section presents the main background theory on which our 

derivations are based. 

2.1. Compound Gaussian distribution 

The CG distribution is a useful and well established tool in the 

robust signal processing literature [14] . This model is a versatile 

one, as it encloses usual distributions such as Gaussian, Student 

t -, K-, and Weibull distributions. A N -dimensional CG observation 

is represented as a product of two statistically independent com- 

ponents. Specifically, if s ∈ C N follows a centered CG distribution, 

denoted s ∼ CG (0 , 6, f τ ) , it has the following stochastic represen- 

tation 

s 
d = 

√ 
τd , (1) 

where 

i ) τ is a positive random scalar, called texture, of probability den- 

sity function (p.d.f.) f τ . This parameter is statistically indepen- 

dent of d . Depending on f τ , we can obtain various standard 

multivariate distribution for s [14] . In order to design algorithm 

that are robust to these distributions, we consider here this pa- 

rameter as unknown deterministic for each realization. This dis- 

tribution will be thus denoted by s k ∼ CG (0 , 6, τk ) for each ob- 
servation k ∈ [[1, K ]]. We also denote τ the vector that aggre- 

gates the parameters { τ k } for a given set of observations { s k }. 

ii ) d follows a zero-mean multivariate complex Gaussian distribu- 

tion of covariance matrix 6, denoted, d ∼ CN (0 , 6) . The pa- 

rameter 6 ∈ H 
+ 
N is referred to as the scatter matrix. Notice that 

if E { τ } < ∞ , the covariance matrix of s exists and is propor- 

tional to the scatter matrix, i.e., E { ss H } = E { τ } 6. 

For a set of K independent and identically distributed (i.i.d.) 

zero-mean observations following a CG distribution, we have 

the representation S 
d = DT , where, the k -th column of D ∈ C N×K 

follows d k ∼ CN (0 , 6) and T = diag ({ √ 
τk } ) .

2.2. Complex generalized Bingham Langevin distribution (CGBL) 

In order to model priors for subspaces, we focus in the follow- 

ing on the distribution w.r.t. the set U N 
P . Among the most widely 

used distributions on U N P are the Bingham and the Langevin 

distributions [24–26] . We present the CGBL distribution as a 

generalization of the aformentioned usual directional statistics 

to the case of matrix variables with complex entries. The CGBL 

is a probability distribution on the set of semi-unitary matrices 

which combines linear and quadratic terms that is parametrized 

by a set of matrices { A p } ⊂ H 
+
N and the matrix C . We denote 

U ∼ CGBL (C , { A p } ) ∈ C N×P when the p.d.f. of U on U N 
P
reads 

p CGBL (U ) ∝ exp 

{
P ∑ 

p=1

Re { c H p u p } + u 
H 
p A p u p 

}
, (2) 

where c p and u p stand for the p th column vector of, respectively, 

C and U . 

Remark 1. From (2) , p CGBL promotes the concentration of each 

vector u p around c p and each range space u p u 
H 
p around the 

subspace associated to the strongest eigenvalues of the Hermitian 

matrix A p . Typically, if A p = A and c p = 0 , ∀ p ∈ [[1, P ]], the range

space UU H tends to be close to the dominant space of A . 

Moreover, an efficient way to sample from this distribution is 

described in Appendix A . Finally, Table 1 lists special cases of the 

CGBL that correspond to standard distributions extended to the 

complex case. 

Remark 2. The estimation of the Bingham and Langevin dis- 

tributions parameters from a set of observations { U k } is well 

investigated theoretically in [27] and references therein for the 

real case. In our context we rather aim at recovering the signal 

subspace basis U from a matrix of noisy observations Y . The 

parameters of the CGBL distribution thus gather the available prior 

information and we do not address their estimation. 



Table 1

Special cases of the CGBL distribution.

Complex distribution Parameters Probability density function

Bingham–Langevin CBL( C, 8, A ) 8 = diag ({ φp } ) , A ∈ H + 
N , p CBL ∝ exp 

{∑ P 
p=1 Re { c H p u p } + u H p A p u p

}

A p = φp A , C ∈ C N×P 

Bingham CB( 8, A ) 8 = diag ({ φp } ) , A ∈ H + 
N

p CB ∝ exp 
{∑ P 

p=1 u 
H 
p A p u p

}

c p = 0 , A p = φp A 

Invariant Bingham CIB( κ , A ) κ ∈ R + , A ∈ H + 
N p CIB ∝ etr{ κU H AU } 

A p = κA 

Langevin CL( C ) C ∈ C M×R , A p = 0 p CL ∝ etr{Re{ C H U }} 

3. Data model

Along this paper, N denotes the size of the data, K represents 

the number of samples, and P is the rank of the signal subspace 

( P < N ). We denote by Y ∈ C N×K the data matrix, U ∈ U N 
P an 

unknown orthonormal basis of the signal subspace, S ∈ C P×K 

the matrix containing the signal of interest and N ∈ C N×K the 

additive noise. The conditional probability of Y given U is denoted 

by p ( Y | U ) and E U , Y { . } denotes the expectation operator applied on
both U and Y . 

The data is modeled as a sum of low-rank CG sources embed- 

ded in white Gaussian noise. This formulations is useful to model 

clutter (or power-fluctuating sources) plus thermal noise in several 

array processing applications, such as RADAR [18,19,21–23] . For 

this model, the samples { y k } K k =1 (the columns of Y ) are drawn as:
y k = s k + n k (3) 

where 

• s k ∼ CG (0 , 6, τk ) are the low rank CG distributed sources.

The rank P is assumed pre-established 1 . Moreover, the source

scatter matrix is parameterized by its low-rank EVD as

6
EVD = U3U 

H (4) 

In addition, 

i ) { τ k } are the CG textures assumed to be positive unknown 

deterministic. 

ii ) 3 = diag ({ λp } ) ∈ R P×P is the diagonal matrix containing

the scatter matrix eigenvalues, which are assumed to be 

positive unknown deterministic. 

iii ) U ∈ U N P are the eigenvectors of the scatter matrix, whose 

columns spans the signal subspace basis. This basis follows 

the distribution U ∼CGBL( C , { A p }). 
• n k ∼ CN (0 , σ 2 I N ) is an additive white Gaussian noise of known

or pre-estimated variance σ 2 .

The data matrix can be therefore written as

Y = U ̃ S T + N (5) 

with the columns of ˜ S ∈ C P×K distributed as ˜ s ∼ CN (0 , 3) and 

T = diag ({ √ 
τk } ) ∈ R P×P is the diagonal matrix. The latter reads

as a modified linear model, with unknown power fluctuations 

for each sample gathered in the matrix T . 

Remark 3. In this paper, we consider the hybrid Bayesian model 

because our main interest is incorporating a prior knowledge on 

the signal subspace in the estimation process. Conversely, we 

choose not to specify the p.d.f. of the texture parameters { τ k } (and 

the eigenvalues { λp }) which are assumed unknown and determin- 

istic. By doing so, we ensure more robustness to any prior mis- 

1 Indeed, the proposed results can still be applied using plug-in rank estimates or

by integrating physical prior knowledge on this parameter [28] . About rank estima- 

tion, the reader is referred to the overview [29] and recent methods using shrinkage

[30] or random matrix theory [31] .

match w.r.t. these parameters. Moreover, this assumption also al- 

lows for computational tractability since including a prior distri- 

bution on { τ k } in the considered model leads to integral func- 

tions that are complex to handle [32] . In the following, for sake of 

conciseness and with an abuse of language, the ML-MMSD hybrid 

Bayesian estimator (respectively ML-MAP) will be simply referred 

to as MMSD (respectively MAP). 

By denoting 

6k = τk U 3U 
H + σ 2 I N ∀ k ∈ [[1 , K]] (6) 

we have for each sample the conditional representation 

(y k | U , 3, τk ) ∼ CN (0 , 6k ) , leading to the conditional p.d.f. of

the sample set Y as 

p(Y | U , { λp } , { τk } ) =
∏ K

k =1 p(y k | U , { λp } , τk ) ∝
∏ K

k =1
exp { −y H 

k 6
−1 
k y k } 

det (6k )

(7) 

Thanks to the Sherman Morrison Woodbury lemma, the expression 

of 6−1 
k 

is simplified as 6−1 
k 

= σ−2 I − U Ŵk U H , where Ŵk = σ−2 I P −
(τk 3 + σ 2 I P ) 

−1 is a diagonal matrix of entries

[ Ŵk ] p,p = γk,p = 
τk λp 

σ 2 (τk λp + σ 2 ) 
(8) 

From (2) and (7) , some manipulations allow to the posterior prob- 

ability of U to be rewritten as 

p(U | Y , { τk } , { λp } ) (9) 

∝ p(Y | U , { τk } , { λp } ) p CGBL (U ) ∝
K ∏ 

k =1

exp 
{
−y H 

k ( 6k ) 
−1 

y k
}

det (6k ) 
p CGBL (U ) 

∝ 

K ∏ 

k =1 

( 
P ∏ 

p=1 

1 

τk λp + σ 2 

)
exp 

{
−y H k (−U Ŵk U 

H + σ−2 I N ) y k
}
p CGBL (U ) 

∝ 

K ∏ 

k =1

(
P ∏ 

p=1 

1 

τk λp + σ 2 

)
exp 

{
K ∑ 

k =1

y H k U Ŵk U 
H y k 

}
p CGBL (U ) 

∝ 

(
K ∏ 

k =1

P ∏ 

p=1 

1 

τk λp + σ 2 

)
exp 

{
P ∑ 

p=1

u 
H 
p M p u p 

}
p CGBL (U ) 

∝ 

(
K ∏ 

k =1

P ∏ 

p=1 

1 

τk λp + σ 2 

)
exp 

{
P ∑ 

p=1

Re { c H p u p } + u 
H 
p [ A p + M p ] u p

}

(9) 

with 

M p = 

K ∑ 

k =1

γk,p y k y 
H 
k (10) 

where γ k,p is given in (8) . 



4. Bayesian subspace estimators

In this section, we aim to develop Bayesian estimators of the 

subspace orthonormal basis U according to the data model (5) . The 

first proposal is a MM algorithm to compute the MAP estimator. 

The second is an algorithm to evaluate the MMSD through MM 

iterations and a Gibbs sampling scheme. Additionally, we present a 

special case, referred to as “simplified model”, for which the MAP 

and the MMSD estimators coincide, and can be obtained through 

closed form updates. Considering these approaches, the properties 

of each method are listed below: 

• Theoretically, the MMSD approach offers best performance in

terms of expected distance between the estimated and true sig- 

nal subspace projection matrices. Nevertheless, the computa- 

tion of the MMSD estimator usually requires a Gibbs sampler

scheme which can be computationally expensive.
• The MAP is theoretically sub-optimal (compared to the MMSD),

but can generally reach good performance in practice. More- 

over, the proposed algorithm to compute this estimator only

involves closed form updates, which significantly reduces the

computational time.
• The MMSD for the simplified is interesting because it does not

require a Gibbs sampling scheme to be computed. The assumed

simplification is not necessarily realistic and introduces a mis- 

match w.r.t. the true model, however, numerical simulations

will illustrate the interest of the approach.

4.1. The subspace MAP estimator 

In this section, we derive a subspace MAP estimator based on 

the data model (3) that maximizes the posterior probability. It 

reads as the solution of 

maximize 
̂ U , { τk } , { λp } 

p( ̂  U | Y , { τk } , { λp } )

subject to τk ≥ 0 ∀ k, λp ≥ 0 ∀ p
̂ U H ̂  U = I P

(11) 

From (9) and (11) , this problem can be recasted as 

maximize 
{ ̂  u p } , { τk } , { λp } 

P ∑ 

p=1 
Re { c H p ̂u p } + ̂u H p [ A p + M p ] ̂  u p

−
∑ K

k =1 ln (τk λp + σ 2 ) 
subject to τk ≥ 0 ∀ k, λp ≥ 0 ∀ p

̂ U H ̂  U = I P with ̂ U = [ ̂  u 1 | . . . | ̂  u P ]

M p = 

K ∑ 

k =1

τk λp

σ 2 (τk λp + σ 2 ) 
y k y 

H 
k 

(12) 

To solve this problem, we derive an iterative based MM algorithm 

that sequentially updates the variables ̂  U t , { τ t 
k 
} , { λt 

p } at the t th iter- 
ation. The MM algorithm performs, at each iteration, an update of 

the variables by minimizing a surrogate function of the objective. 

This process decreases the value of the objective function at each 

step. We adapt here the surrogates function of [22] to our con- 

text, which leads to closed form updates of the parameters. The 

resulting algorithm is summed up in the box Algorithm 1 . A brief 

explanation of the derivations is given below. 

4.1.1. Algorithm derivation 

First, the variables ̂ U , { λp }, and { τ k } are initialized. This initial- 

ization can, for example, be taken from the P strongest eigenvec- 

tors and eigenvalues of the SCM for ̂ U and { λp }.
• Update of the basis ̂ U :

By fixing { λt 
p } , { τ t 

k 
} , the update of the basis of interest ̂ U t+1 is

obtained by solving 

maximize 
{ ̂  u p } 

P ∑ 

p=1
Re { c H p ̂  u p } + ̂u Hp

[
A p + M t p 

]
̂ u p 

subject to ̂ U H ̂  U = I P with ̂ U = [ ̂  u 1 | . . . | ̂  u P ]

(13) 

Algorithm 1: MAP for the general model (3) U MAP . 

input : Y , C , { A p } , σ 2 , P , K, N

output : MAP estimators of U , { τk } , { λp }
initialize : ̂ U 0 , { τ 0 

k
} and { λ0 p }

1 for t = 0 . . . T − 1 do 

22 Update ̂ U t+1 = P Proc (H t ) , with H t in (15)

33 Update τ t+1 
k 

∀ k with (18) 

44 Update λt+1 
p ∀ p with (20) 

5 end 

with M t p = 
K ∑ 

k =1
γ t 
k,p 

y k y 
H 
k 
and γ t 

k,p
= 

τ t 
k λ

t 
p 

σ 2 (τ t 
k λ

t 
p + σ 2 ) 

. This problem has 

not a trivial solution due to the semi-unitary constraint. Therefore, 

we apply the MM procedure in order to obtain closed form up- 

dates that improve the value of the objective at each iteration. An 

update of the orthonormal basis can be obtained thanks to Propo- 

sition 1 in Appendix B . This update reads as 

̂ U 
t+1 = P Proc (H 

t ) (14) 

where 

H t = S t + 1 / 2 C and S t = [ (A 1 + M t 1 ) u t 1 | . . . | (A P + M t P ) u t P ]

(15) 

with u t p is the p th column of the matrix U t and the operator P Proc 

is the projection onto the Stiefel manifold [33] , defined as 

P Proc : C N×P −→ U N P

Y 
TSVD = UDV H 7 −→ P Proc { Y } = UV H

(16) 

• Update of { τ k }:

The optimization problem in (12) w.r.t. { τ k } for other fixed vari- 

ables can be expressed as separable sub-problems in τ k as 

minimize 
τk

P ∑ 

p=1
ln 

(
τk λ

t 
p + σ 2 

)
− τk λ

t 
p 

τk λ
t 
p + σ 2 z 

t+1 
k,p 

subject to τk ≥ 0 

(17) 

with z t+1 
k,p

= || y H 
k
u t+1 p || 2 . This problem has no direct solution but a 

closed-form update can be obtained thanks to (66) from Proposi- 

tion 2 in Appendix B for which we identify τk = a, λt 
p = b i , P = I, 

s i = zt+1
k,p

and αt 
k,p 

= θ t 
i 
. Consequently, the update reads

τ t+1 
k 

= 
1

P 

(∑ P
p=1 z 

t+1 
k,p 

τ t 
k λ

t 
p 

τ t 
k λ

t 
p + σ 2 

)(∑ P
p=1 σ

2 αt 
k,p 

τ t 
k λ

t 
p + σ 2 

)

∑ P
p=1 

αt 
k,p λ

t 
p 

τ t 
k λ

t 
p + σ 2 

(18) 

• Update of { λp }:

By fixing the remaining variables, the optimization problem 

(12) w.r.t. { λp } is equivalent to the optimization of the following 

sub-problems 

minimize 
λp

K ∑ 

k =1
ln 

(
τ t+1 
k 

λp + σ 2 
)

− τ t+1 
k λp

τ t+1 
k λp + σ 2 z 

t+1 
k,p 

subject to λp ≥ 0 

(19) 

Similarly to the update of texture and by using (66) , we can ap- 

ply Proposition 2 in Appendix B with λp = a, τ t+1 
k 

= b i , K = I and

βt 
k,p 

= θi , z
t+1 
k,p 

= s i . The updates of λp are then given by 

λt+1 
p = 

1

K 

(∑ K
k =1 z 

t+1 
k,p 

τ t+1 
k λt 

p 
τ t+1 
k λt 

p + σ 2 

)(∑ K
k =1 σ

2 βt 
k,p 

τ t+1 
k λt 

p + σ 2 

)

∑ K
k =1 

βt 
k,p τ

t+1 
k 

τ t+1 
k λt 

p + σ 2 

. (20) 



4.2. The subspace MMSD estimator 

4.2.1. Definition 

The MMSD estimator minimizes the average Euclidean dis- 

tance between the true range space R (U ) = UU H and its estimate 

R ( ̂  U ) = ̂  U ̂  U H . It corresponds to a natural metric between the

subspace spanned by U and ̂ U in the complex Grassmann space.

Straightforwardly extending the formulation of [9] to the complex 

case, the MMSD estimator is expressed as 

̂ U MMSD = arg min 
̂ U 

E U , Y 

{
‖ ̂  U ̂  U 

H − UU 
H ‖ 

2
F

}

= arg max 
̂ U 

E U , Y { Tr { ̂  U 
H UU 

H ̂  U }}

= arg max 
̂ U 

∫ [ ∫
Tr { ̂  U 

H UU 
H ̂  U } p(U | Y ) dU 

]
p(Y ) dY (21) 

This integral can be maximized by directly maximizing the inner 

bracket w.r.t. ̂ U for all possible Y , thus

̂ U MMSD = arg max
̂ U 

∫ 
Tr { ̂  U 

H UU 
H ̂  U } p(U | Y ) dU

= arg max 
̂ U 

Tr 

{ 

̂ U 
H 
[ ∫

UU 
H p(U | Y ) dU 

] 
̂ U 

}
(22) 

which can be obtained as [9] 

̂ U MMSD = P P

{ ∫
UU 

H p(U | Y ) dU

}
= P P { M (p(U | Y )) } (23) 

in which 

M (p(U | Y )) =
∫ 

UU 
H p(U | Y ) dU (24) 

where the operator P P { . } , that extracts the first P eigenvectors
from a given matrix in H 

+ 
N , is defined by 

P P : H 
+
N

−→ U N P

M 
EVD = [ U P | U ⊥ P ] D [ U P | U ⊥ P ] 

H 7 −→ P P { M } = U P .
(25) 

The expression of the MMSD depends on p ( U | Y ), which is 

specified based on both the data model and the prior distribution 

assigned to the parameters. Usually, there is no closed-form solu- 

tions to compute M ( p ( U | Y )). However, (23) can still be evaluated 

using the so-called induced arithmetic mean (IAM) [9] of the 

semi-unitary matrix, as 

̂ U ≈ P P

{
1 

N r 

N bi + N r ∑ 

n = N bi +1 

U (n ) U (n ) 
H 

}
(26) 

where U ( n ) are sampled from p ( U | Y ) (e.g. using the proposed 

method in Appendix A ), N bi stands for the burn-in samples (num- 

ber of thrown samples from the Markov chain), and N r is the 

number of samples used to evaluate the integral. 

4.2.2. The subspace MMSD estimator for CG distributed sources 

We recall that according to the data model described in 

Section 3 , U ∼CGBL( C , { A p }) and y k ∼ CN (0 , τk U 3U H + σ 2 I N ) . 

Based on (22) and (6) , the MMSD estimator of U is expressed as 

the solution of the following optimization problem 

minimize 
̂ U , { τk } , { λp } 

E U , Y 

{
‖ ̂  U ̂  U H − UU H ‖ 2F

}

subject to τk ≥ 0 ∀ k, λp ≥ 0 ∀ p
̂ U H ̂  U = I P

(27) 

In order to solve this optimization problem, we derive in the fol- 

lowing Section an iterative algorithm that sequentially updates the 

variables ̂ U , { τ k } and { λp }. The update of ̂ U requires a Gibbs sam- 

pling scheme, while for updating both the texture { τ k } and the 

eigenvalues { λp }, we use the MM procedure from Section 4.1 . The 

overall algorithm is summed up in the box Algorithm 1 . 

4.2.3. Algorithm derivation 

The initialization of the variables ̂ U 0 , { λ0 p } and { τ 0 k } is done as 
for the MAP estimator. The updates of the blocks ̂ U , { λp } and { τ k }

are detailed below 

• Update of the basis ̂ U :

For fixed blocks { τ t 
k 
} and { λt 

p } , the update ̂ U t+1 is obtained by

solving the following problem 

minimize 
̂ U 

E U , Y 

{
‖ ̂  U ̂  U H − UU H ‖ 2 F 

}

subject to ̂ U H ̂  U = I P
(28) 

Thanks to the expression given in Section 4.2.1 , the update is ob- 

tained by 

̂ U 
t+1 = P P 

{
M (p(U | Y , { τ t 

k } , { λt 
p } )) 

}
(29)

with 

M (p(U | Y , { τ t 
k } , { λt 

p } )) =
∫ 

UU 
H p(U | Y , { τ t 

k } , { λt 
p } ) dU (30) 

The posterior probability in (9) is recognized as (U | Y , { τ t 
k 
} , { λt 

p } ) ∼
CGBL (C , { G t p } ) with G t p = A p + M t p , ∀ p ∈ [[1, P ]]. With this general

distribution, there is no closed form for computing the integral 

in (30) . Nevertheless, the update can be evaluated by the IAM as 

given in (26) where U t 
(n ) 

are sampled as U t 
(n ) 

∼ CGBL (C , { G t p } ) . In
order to do so, an efficient Gibbs sampling procedure to draw the 

CGBL distribution is given in Algorithm 6 of Appendix A . Special 

Algorithm 2: MMSD for the general model (3) U MMSD . 

input : Y , C , { A p } , σ 2 , P , K, N, N bi , N r

output : ̂ U MMSD , { τk } , { λp }
initialize : ̂ U 0 , { τ 0 

k 
} and { λ0 p }

1 for t = 0 . . . T − 1 do 

2 for n= 1 . . . N bi + N r do 

33 Sample U (n ) = CGBL (C , { G p } ) ccf Appendix A
4 end 

55 Update ̂ U t+1 ≈ P P

{ 
1
N r

∑ N bi + N r
n = N bi +1 

U (n ) U (n ) 
H 
} 

66 Update τ t+1 
k 

∀ k with (18) 

77 Update λt+1 
p ∀ p with (20) 

8 end 

cases for the sampling scheme required on this update are given 

in Table 2 . 
• Update of the eigenvalues { λp } and the textures { τ k }:

For fixed ̂ U t+1 , the update of the eigenvalues and the texture is

equivalent to solve respectively the ML problem (19) and (17) since 

these parameters are unknown deterministic (cf. remark 2). Conse- 

quently, the updates of { τ t+1 
k 

} and { λt+1 
p } are obtained respectively 

from (18) and (20) . 

4.3. Simplified model: white CG model with CIB prior 

In this Section, we focus on a special case that we refer to 

as simplified model, where 6 = λUU H . This relaxation of the true 

model, e.g. used in [32] , allows for interesting simplifications that 

significantly reduce the computational time of the estimation pro- 

cedure. Note that any scaling on the scatter can be absorbed in 

the textures parameters as ˜ τ = λτ, so we can assume 6 = UU H . 

For this model, y k | U , τk ∼ CN (0 , 6k ) , thus, the covariance reads

6k = τk UU 
H + σ 2 I N (31) 

Using the Sherman Morrison Woodbury lemma, 6−1 
k 

reads as 

6−1 
k 

= (τk UU 
H + σ 2 I ) −1 = σ−2 I −

τk 
σ 2 (τk + σ 2 ) 

UU 
H , ∀ k (32) 



Table 2

Posterior distributions for standard priors on U under simplified (SM) and general (GM) models.

The prior complex distribution of U Posterior distribution p ( U | Y ) for a given model (SM/GM) To be sampled for MMSD

Bingham CB( A, 8) SM: p(U | Y ) SM ∝ exp 

{
P ∑

p=1
u H p (φ(p) A + W ) u p 

}
CB ({ φ(p) A + W } ) 

GM: p(U | Y ) GM ∝ exp 

{
P ∑

p=1
u H p (φ(p) A + G p ) u p 

}
CB ({ φ(p) A + G p } ) 

Langevin CL( C ) SM: p(U | Y ) SM ∝ etr 
{
Re { C H U } + U H WU 

}
CBL( C, I P , W )

GM: p(U | Y ) GM ∝ exp 

{
P ∑ 

p=1
Re { c H p u p } + u H p G p u p

}
CGBL( C , { G p })

Invariant Bingham CIB( κ , A ) SM: p(U | Y ) SM ∝ etr 
{
U H (κA + W ) U 

}
Closed form P P { κA + W } 

GM: p(U | Y ) GM ∝ exp 

{
P ∑

p=1
u H p (κA + G p ) u p 

}
CB ({ κA + G p } ) 

Then, the p.d.f. p ( Y | U , { τ k }) reduces to 

p(Y | U , { τk } ) ∝
K ∏ 

k =1

p(y k | U , τk ) ∝
K ∏ 

k =1 

exp 
{
−y H 

k 
6−1 

k 
y k 

}

det (6k ) 

∝ exp 

{
K ∑ 

k =1

τk 
σ 2 (τk + σ 2 ) 

U 
H y k y k U 

} (
K ∏ 

k =1

(τk + σ 2 ) −P

)
(33) 

∝ etr 
{
U 
H WU 

}
(

K ∏ 

k =1

(τk + σ 2 ) −P

)
(34) 

where W = YBY H and B = diag 

({ 
τ1

σ 2 (τ1 + σ 2 ) 
. . . 

τK
σ 2 (τK + σ 2 ) 

} )
. In or- 

der to obtain closed form expression, we assign to U a CIB distri- 

bution, i.e., U ∼CIB( κ , A ), thus its p.d.f. reads as 

p CIB (U ) ∝ etr { κU 
H AU } (35) 

4.3.1. The MMSD estimator for the simplified model 

In this case, the MMSD estimator of the basis ̂ U is defined as

the minimizer of the following problem 

minimize 
̂ U , { τk } 

E U , Y 

{
‖ ̂  U ̂  U H − UU H ‖ 2F

}

subject to τk ≥ 0 , ∀ k
̂ U H ̂  U = I P

(36) 

Following the previous lines, we develop an iterative estima- 

tion method by solving (36) w.r.t. ̂ U and { τ k } sequentially. The box

Algorithm 3 sums-up the main steps of the estimation process 

Algorithm 3: MMSD estimation of subspace for the simplified 

model ̂ U sMMSD .

input : Y , A , σ 2 , P , K, N, κ
output : ̂ U sMMSD , { τk }
initialize : ̂ U 0 , { τ 0 

k 
}

1 while stop criterion unreached do

22 Update ̂ U t = P P

{
κA + W t 

}

33 Update τ t 
k 

= max

(
y H 
k 

̂ U t ̂  U t 
H 
y k 

P − σ 2 , 0 

)

4 end 

which are detailed in the following. 
• Update of the basis ̂ U :

Now, we assume that the block { τ t 
k 
} is fixed, consequently, the

updated ̂ U t+1 is the solution of the following problem

minimize 
̂ U 

E U , Y 

{
‖ ̂  U ̂  U H − UU H ‖ 2F

}

subject to ̂ U H ̂  U = I P
(37) 

In this case, the updated basis ̂ U t+1 is derived as the MMSD esti- 

mator in (23) leading to 

̂ U 
t+1 = P P

{
M (p(U | Y , { τ t 

k } ))
}

(38) 

where 

M (p(U | Y , { τ t 
k } )) =

∫ 
UU 

H p(U | Y , { τ t 
k } ) dU (39) 

From (35) and (33) , the posterior probability p(U | Y , { τ t 
k 
} ) reads

as 

p(U | Y , { τ t 
k } ) ∝ p(Y | U , { τ t 

k } ) p CIB (U ) ∝ etr 
{
κU 

H AU 
}
etr 

{
U 
H W 

t U 
}

∝ etr 
{
U 
H (κA + W 

t ) U 
}

(40) 

with W t = YB t Y H and B t = diag 

({ 
τ t 
1 

σ 2 (τ t 
1 + σ

2 ) 
. . . 

τ t 
K 

σ 2 (τ t 
K + σ

2 ) 

} )
. Using 

Proposition 1 from [9] , we notice that the updated basis admits 

the following closed form expression 

̂ U 
t+1 = P P

{ ∫
UU 

H etr 
{
U 
H (κA + W 

t ) U 
}
dU 

}
= P P 

{
κA + W 

t 
}
(41) 

This specific model provides a closed-form solution with an inter- 

esting interpretations. Indeed, this MMSD appears naturally as the 

principal subspace of the sum of the SCM using scaled samples and 

scaled prior subspace projector. 
• Update of the texture parameter { τ k }

For fixed ̂ U t+1 , the update of { τ k } is obtained by maximizing

the p.d.f. p(Y | ̂  U t+1 , { τk } ) as
maximize 

{ τk } 
p(Y | ̂  U t+1 , { τk } )

subject to τk ≥ 0 , ∀ k
(42) 

with 6k = τk ̂
 U t+1 ̂  U t+1 

H + σ 2 I N , ∀ k . Minimizing the negative log- 

likelihood is equivalent to solve 

minimize 
{ τk } 

K ∑ 

k =1 
ln 

(
det (6t+1 

k 
) 
)

+ y H 
k 

(
6t+1 

k 

)−1
y k 

subject to τk ≥ 0 , ∀ k

(43) 

which leads to 

τ t+1 
k 

= max 

(
y H 
k ̂

 U t+1 ̂  U t+1 
H 
y k 

P 
− σ 2 , 0 

)
, ∀ k (44) 

4.3.2. Link with the MAP estimator for the simplified model 

From (40) , the update of the basis of interest is the solution of 

the following problem: 

maximize 
̂ U 

̂ U H (κA + W t ) ̂U

subject to ̂ U H ̂  U = I P
(45) 

Given that κA + W t ∈ H 
+ 
N , the updated basis for the MAP estimator 

is 

̂ U 
t+1 = P P { κA + W 

t } (46) 



Fig. 1. AFE w.r.t. SNR for P = 5, N = 20 , U ∼ CL (κ, ̄U ̄U H ) , κ = 80 , ν = 0 . 5 , from top to bottom: K = 3 P, K = 4 P and K = 6 P. 

which corresponds to (41) . Furthermore, we can notice that the 

MAP update of { τ t+1 
k 

} is identical to (44) . Therefore, in this case, 
the MAP estimator coincides with the MMSD estimator. 

4.4. Notes on complexity and convergence analysis 

4.4.1. Computational complexities 

In this subsection, we detail the complexity of the proposed al- 

gorithms. Notice that we focus on the cost of each variable up- 

dates. The total complexity of the algorithms is to be scaled by the 

number of iterations. For both the MAP and the MMSD, the update 

of the textures { τ k } and the eigenvalues { λp } are obtained in closed 

form that only involve scalar multiplications/additions ( O(NKP ) ). 

The bottleneck of each algorithm lies in the update of the eigen- 

vectors U : 

• MAP: The derivation of U MAP requires the computation of H t in

(15) ( O(NKP ) ) and its TSVD of H t in (14) ( O(N 2 P + P 2 N) ).



Fig. 2. AFE w.r.t. SNR for P = 5, N = 20 , ν = 0 . 5 , U ∼ CB (κ0 8, ̄U ̄U H ) , κ0 = 300 from top to bottom: K = 3 P, K = 4 P and K = 6 P. 

• MMSD: The update of U MMSD requires the evaluation of the ma- 

trix M in (30) with a gibbs sampler (which cost cannot be eval- 

uated analytically) and the computation of its P strongest eigen- 

vectors ( O(N 2 P ) ). Nevertheless, (30) can be obtained in closed- 

form for the simplified model ( O(N 2 P ) ).

4.4.2. Convergence analysis 

The MM algorithm ensures a monotonic decrement of the 

objective function at each iteration [34] . A convergence anal- 

ysis for the MAP algorithm can be directly conducted as in 

[22,35] . However, this analysis cannot be applied directly to the 

MMSD since this estimator requires to approximate the exact 

update by the Gibbs sampler in (26) . Therefore, the conver- 

gence of Algorithm 2 remains an opened question. Nevertheless, 

Section 4.1.1 shows that the numerical performance obtained with 

Algorithm 2 is satisfactory. 



Fig. 3. AFE w.r.t. SNR for P = 5, N = 20 , ν = 0 . 5 , U ∼ CIB (κ, ̄U ̄U H ) , κ = 50 , from top to bottom: K = 3 P, K = 4 P and K = 6 P. 

5. Numerical simulations

5.1. Setup 

To illustrate the performance of the proposed estimators, we 

evaluate their average fraction of energy (AFE) through Monte 

Carlo simulations. The AFE is considered as an adequate criteria of 

performance for subspace estimation, since it evaluates the close- 

ness of the true range space UU H towards its estimate ̂ U ̂  U H . The

AFE of a given estimator ̂ U is expressed as:

AFE ( ̂  U ) = E { Tr { U 
H ̂  U ̂  U 

H U }} /P (47) 

The samples are generated from the model in Section 3 , i.e. 

y k ∼ CN (0 , τk U 3U H + σ 2 I ) . The texture parameters { τ k } follow 

a Gamma distribution parameterized by its shape ν which re- 

flects the heterogeneity of the sources, i.e., τk ∼ Ŵ(ν, 1 ν ) , ∀ k (thus

E { τ } = 1 ). We set [ 3] p,p = (P + 1 − p) / ( 
∑ P 

i =1 i ) and σ
2 to fix the



Fig. 4. AFE w.r.t. SNR for P = 5, N = 20 , κ = 50 , ν = 0 . 5 , from top to bottom: K = 2 P, K = 3 P and K = 4 P. 



Fig. 5. AFE of the MMSD w.r.t. assumed κ for various SNR, P = 5, N = 20, ν = 1 , K = 30 , U ∼ CIB (κ0 , ̄U ̄U 
H ) , with true parameter κ0 = 60 . 

signal to noise ratio as SNR = Tr { 3} /σ 2 . We consider different sce- 

narios for the distribution of U : 

• S1: U follows the complex Langevin distribution U ∼ CL ( ¯κU ) ,
• S2: U follows the complex Bingham distribution U ∼
CB (κ8, Ū ̄U H ) where [ 8] p,p = (P + 1 − p) / ( 

∑ P 
i =1 i ) , 

• S3: U follows the complex invariant Bingham distribution U ∼
CIB (κ, Ū ̄U H ) , 

where Ū ∈ U N 
P are the first vectors of the canonical basis and the 

concentration parameters ( κ and 8) are set so that AFE ( ̄U ) has 

the same value for all the scenarios. We compare the following 

estimators: i ) ̂ U SCM = P P { YY H } , the estimator built from the EVD

of the SCM; ii ) ̂ U MLE is the subspace MLE computed with EBMM

Algorithm from [22] ; iii ) ̂ U MAP is the proposed MAP estimator,

computed with Algorithm 1 ; iv ) ̂ U MMSD is the proposed MMSD

estimator computed with Algorithm 2 ; v ) ̂ U sMMSD the simplified

MMSD estimator, that assumes 3 = I and U ∼ CIB (κ, Ū ̄U H ) , com- 

puted with Algorithm 3 . This estimator is evaluated for S2 and S3 

but the relaxation is not suited for S1 (where the true prior is a 

complex Langevin); vi ) Ū is the center of the prior distribution on 

U . 

5.2. Results 

Fig. 1 displays the AFE in function of SNR for various sample 

size K in scenario S1. In this case, the SCM exhibits good per- 

formance in the standard regimes (high SNR and/or large K ). The 

textures parameter is ν = 0 . 5 so the sources are mildly impulsive. 

Therefore the MLE exhibits performances close to the SCM as it can 

be expected (differences will be observed in the following). How- 

ever, both show their limits at low SNR. In this challenging con- 

text, Bayesian estimators can leverage the prior information and 

exhibit better performance in terms of AFE. Interestingly, for the 

complex Langevin prior, the MMSD outperforms the MAP, which 

reaches performance close to SCM/MLE as the SNR increases. 

Fig. 2 displays the AFE in function of SNR for various sample 

size K in scenario S2. The same general observations as in the pre- 

vious Figure can be drawn. For the complex Bingham prior case, 

the MMSD still outperforms the MAP, but not as significantly as 

in the scenario S1. We also observe that sMMSD, that assumes 

equals eigenvalues and a mismatched (averaged) prior, offers an 

interesting performance versus computational time trade-off when 

it comes to estimate only the signal subspace. By construction of 

the true prior, the first column-vectors of U exhibits less variance 

than the last ones. By uniformly averaging the prior for each vec- 

tors, sMMSD introduces a bias towards the center of distribution, 

which explains its performance close to Ū at low SNR. 

Fig. 3 displays the AFE in function of SNR for various sample 

size K in scenario S3. Here, the sMMSD assumes the true prior 

and is only mismatched by assuming equals eigenvalues. In this 

scenario the sMMSD exhibits performance almost identical to the 

MMSD, which suggest that it is acceptable to relax the eigenvalue 

estimation when it comes to estimate only the signal subspace. 

Fig. 4 displays the AFE in function of SNR for various sam- 

ple size K in the actual simplified model, i.e., the scenario S3 

where 3 = I . In this context, the MMSD and the MAP coincide 

with sMMSD and we still observe the interest of the Bayesian ap- 

proach in challenging contexts (low SNR and/or K ). 

5.3. Robusteness to the concentration parameter and the signal 

distribution 

First, we study the effect of a miss-selected concentration pa- 

rameter κ on the AFE of the proposed Bayesian estimator. The 

setup of Fig. 5 is the same as for Fig. 4 (simplified model where the 

MMSD and MAP coincide) and displays the AFE of the MMSD es- 

timator w.r.t. the assumed κ , while the true concentration param- 
eter κ0 is fixed. This figure illustrates that, for a reasonable range 

of κ , the AFE of the MMSD estimator remains almost unchanged. 

Thus, the proposed method appears robust to a reasonable miss- 

selection of the concentration parameters of the assumed prior dis- 

tribution. 

Second, we study the performance of the proposed method 

w.r.t. the signal distribution, parameterized by the shape ν . The 
setup of Fig. 6 is the same as for Fig. 4 and displays the AFE of 

the sMMSD estimator w.r.t ν for various SNRs. When ν → 1, the 

signal tends to be more impulsive (i.e., heavy tailed distributed). In 

this context, we can notice a slight difference between the SCM 

and the MLE, which illustrates the interest of taking the non- 

Gaussianity into account. Interestingly, the performance drop hap- 



Fig. 6. AFE w.r.t. ν for P = 5, N = 20, K = 30 , U ∼ CIB (κ0 , ̄U ̄U 
H ) from top to bottom SNR = 0dB, SNR = 5dB and SNR = 10dB. 

pens at lower ν for the Bayesian estimator, which shows the inter- 

est of exploiting both the non-Gaussian assumption and the prior 

knowledge. 

6. Conclusion

In this paper, we considered a Bayesian approach for subspace 

estimation. First, we introduced a generalized version of the com- 

plex Bingham Langevin distribution (CBL) in order to model the 

prior distribution of the subspace orthonormal basis. Second, we 

formulated the MAP and the MMSD estimators of the signal sub- 

space in the context of CG distributed sources and CGBL dis- 

tributed subspace. Finally, simulations illustrated the interest of the 

proposed approach in critical regimes (low SNR and/or low sample 

size). 
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Appendix A. Generation of the CGBL distribution 

In this appendix, we present the pocedure in order to sample 

a semi-unitary random matrix U ∈ U N P from the complex general- 

ized Bingham Langevin distribution (CGBL), i.e., U ∼CGBL( C , { A p }), 

where C ∈ C N 
P and { A p } ⊂ H 

+ 
N . The p.d.f. of U is given by 

p CGBL (U | C , { A p } ) =
P ∏ 

p=1

p CVGBL (u p | c p , A p )

∝ exp 

{
P ∑ 

p=1

Re { c H p u p } + u 
H 
p A p u p 

}

∝ 

P ∏ 

p=1

exp 
{
Re { c H p u p } + u 

H 
p A p u p 

}
(48) 

where u p and c p stand for the p th column of respectively U 

and C . Most of the upcoming results shown below are based on 

the methodology of [25,26] . In the following, we first recall the 

sampling procedure of a real vector Bingham Langevin (vBL) dis- 

tributed vector. Then, we define and sample a complex vGBL dis- 

tributed vector. Finally, we deduce the generation of complex a GBL 

distributed matrix. 

A1. Sampling a real Bingham Langevin distributed vector 

The vBL distribution [25] is a probability distribution on the set 

of unitary real vectors which combines linear and quadratic terms 

denoted as u ∼ vBL( c, A ) where the matrix A is a symmetric matrix 

and c is a real vector. The p.d.f. of u ∼ vBL( c, A ) is proportional to 

f ∗vBL (u ) = exp { c T u + u 
T Au } (49) 

In [26] , an acceptance-rejection scheme is proposed to sample the 

vBL distribution using an angular central Gaussian distribution de- 

noted as ACG( Ä) with Ä is a symmetric positive definite matrix. 

Its p.d.f. reads as 

f ∗ACG (u ) = | Ä| 1 / 2 (u 
T Äu ) −N/ 2 (50) 

with 

Ä = I + (2 /b)(γ I − A − 1 / 2 cc T ) (51) 

where γ = max ( eig (A + 1 / 2 cc T )) and b satisfies the following 

equality 

N ∑ 

i =1

1 

b + 2 βi 
= 1 (52) 

with { β i } denotes the eigenvalues of the matrix γ I − A − 1 / 2 cc T . 

This sampling technique is summed up in the box Algorithm 4 . 

A2. Defintion and sampling of the complex vector generalized 

Bingham Langevin distributed vector 

Let us start first with defining the relation between the CVGBL 

distribution and the vBL distribution. Based on [26] , a given com- 

plex unitary random vector u ∈ C N with u ∼CVGBL( c, A ) has a.d.f. 

of the form 

p CVGBL (u ) ∝ exp 
{
Re { c H u } + u 

H Au 
}

where A ∈ H 
+ 
N and c is a complex vector. Let us denote 

u = u 1 + i u 2 , A = A 1 + i A 2 and c = c 1 + i c 2 (53) 

Algorithm 4: Acceptance-rejection sampling scheme for the 

vBL distribution. 

input : A , c 

output : u 

1 1 Compute γ = max ( eig (A + 1 / 2 cc T )) 

2 2 Compute b ∗ satisfying (52) 

3 3 Compute 

M ∗(b ∗) = exp { 1 / 2 + γ } exp {−(N − b ∗) / 2 } (N/b ∗) N/ 2 | Ä| −1 / 2 
4 4 Compute Ä = I + (2 /b ∗)(γ I − A − 1 / 2 cc T ) 

5 repeat 

6 Sample y ∼ N (0 , Ä−1 ) 

7 Compute u = y / || y || 
8 Compute f ∗

ACG (u ) = | Ä| 1 / 2 (u T Äu ) −N/ 2 

9 Compute f ∗
vBL (u ) = exp { c T u + u T Au } 

10 Sample u ∼ Unif (0 , 1) 

11 until u < f ∗
vBL (u ) / (M ∗(b ∗) f ∗

ACG (u )) ; 

12 12 Accept u 

where u 1 , c 1 are respectively the real parts of u, c and u 2 , c 2 are 

respectively the imaginary parts of u, c . The matrix A 1 is symmet- 

ric and A 2 is a skew-symmetric matrix. In the following, we aim to 

introduce a relation between the vBL distribution and the CVGBL 

distribution. 

p CVGBL (u ) ∝ exp 
{
Re { c H u } + u 

H Au 
}

= exp 
{
Re { (c 1 + i c 2 ) 

H (u 1 + i u 2 ) }
}

exp 
{
(u 1 + i u 2 ) 

H (A 1 + i A 2 )(u 1 + i u 2 ) 
}

∝ exp 
{
c T 1 u 1 + c T 2 u 2 + u 

T 
1 A 1 u 1 + i u 

T 
1 A 1 u 2 + i u 

T 
1 A 2 u 1 

−u 
T 
1 A 2 u 2 − i u 

T 
2 A 1 u 1 + u 

T 
2 A 1 u 2 + u 

T 
2 A 2 u 1 + i u 

T 
2 A 2 u 2 

}

∝ exp 
{
c T 1 u 1 + c T 2 u 2 + u 

T 
1 A 1 u 1 − u 

T 
1 A 2 u 2 + u 

T 
2 A 1 u 2 

+ u 
T 
2 A 2 u 1 

}
(54) 

Given that A 1 is a symmetric matrix and A 2 is a skew-symmetric 

matrix, we have 

u 
T 
2 A 2 u 2 = 0 , u 

T 
1 A 2 u 1 = 0 and u 

T 
1 A 1 u 2 = u 

T 
2 A 1 u 1 

Then, 

p CVGBL (u ) ∝ exp { ̃ c T ˜ u + ˜ u 
T ˜ A ̃  u } (55) 

with 

˜ u 
T = [ u 

T 
1 , u 

T 
2 ] , ˜ c 

T = [ c T 1 , c 
T 
2 ] and 

˜ A = 

[
A 1 −A 2 

A 2 A 1 

]

Finally, 

u ∼ CVGBL (c , A ) ⇔ ˜ u ∼ vBL ( ̃ c , ̃  A ) (56) 

with ˜ u ∈ R 2 N , ˜ c ∈ R 2 N and ˜ A ∈ R 2 N×2 N a symmetric matrix. 

Algorithm 5 details the generation of the unit complex random 

Algorithm 5: The generation of the unit complex random vec- 

tor u ∼CVGBL( c, A ). 

input : c , A 

output : u 

1 1 Compute the 2 N real unit vector ˜ c from the vector c 

2 2 Compute the 2 N × 2 N real symmetric matrix ˜ A from the 

matrix A 

3 3 Sample the real unit random vector ˜ u = vBL ( ̃ c , ̃  A ) 

4 4 Sample the complex unit random vector u from ˜ u 

vector u ∼CVGBL( c, A ). 



A3. Sampling a CGBL distributed matrix 

The random matrix CGBL is sampled from the markov chain 

monte carlo method [25] . Hence, we generate samples U ∼CGBL( C , 

{ A p }) which converge in distribution to p CGBL . The procedure is de- 

tailed in Algorithm 6 and is similar to [25] . 

Algorithm 6: The generation of the semi-unitary matrix 

U ∼CGBL( C , { A p }). 

input : C , { A p }
output : U 

initialize : U (0) ← U init (a semi-unitary matrix) 

1 while stop criterion unreached do 

2 for p ∈ { 1 , . . . , P } in random order do 

33 Compute the null space N of the matrix U [ , −p] 

44 Compute the unit vector u = N H U [ ,p] 

55 Compute c̄ = κN H c p and Ā = N H A p N 

66 Update the complex unit vector u ∼ CVGBL ( ̄c , ̄A ) 

77 Update u p = Nu 

8 end 

9 end 

Appendix B. Details on the derivation of the MM algorithm 

We derive two propositions needed for the proposed algorithms 

design. These propositions are generic. The first proposition is used 

for the update of the orthonormal basis. The second proposition is 

useful to derive updates w.r.t. the texture parameter { τ k } and the 

eigenvalues { λp }. 

Proposition 1. Let U = [ u 1 , . . . , u P ] ∈ U N 
P , Q = [ q 1 , . . . , q P ] ∈ C N×P 

and { Z p } ⊂ H 
+ 
N . The function 

f (U ) = 

P ∑ 

p=1

Re { q H p u p } + u 
H 
p [ Z p ] u p (57) 

is lower bounded at U t as 

f (U ) ≥
P ∑ 

p=1

u 
H 
p (Z p u 

t 
p + 1 / 2 q p ) + (u 

t H 
p Z p + 1 / 2 q H p ) u p + const

= Tr { U 
H H 

t } + Tr { H 
t H U } + const = −|| U − H 

t || 2 F + const 

(58) 

with equality when U = U t = [ u t 
1 , . . . , u 

t 
P ] and H t = 1 / 2 Q +

[ Z 1 u 
t 
1 , . . . , Z P u 

t 
P ] . The surrogate function reads as 

f (U | U 
t ) = −|| U − H 

t || 2F (59) 

Maximizing the above function under unitary constraints is equivalent 

to solve 

minimize 
̂ U 

|| U − H t || 2 F 
subject to ̂ U H ̂  U = I P

(60) 

which is an orthogonal Procrustes problem [22] that has a unique so- 

lution given as 

̂ U 
t+1 = P Proc (H 

t ) (61) 

where the projection onto the set U N 
P is denoted by the operator 

P Proc : C N×P −→ U N P

Y 
TSVD = UDV H 7 −→ P Proc { Y } = UV H

(62) 

with 
TSVD = defines the thin-singular value decomposition of a given 

matrix. 

Proposition 2. Let us consider a , { b i } and { s i } where a > 0, b i > 0 and 

s i > 0, ∀ i ∈ [[1, I ]] . The objective function

g(a ) = 

I ∑ 

i =1

(
ln (ab i + σ 2 ) −

ab i s i 
ab i + σ 2 

)
(63) 

is upper bounded by 

g(a ) ≤ A ln (Ba + C) − D ln (a ) (64) 

with 

    
    

θ t 
i = 1 + s i 

a t b i 
a t b i + σ 2 

A = 
∑ I

i =1 θ
t
i

B = 

∑ I
i =1 

θ t 
i b i

b i a t + σ 2 

∑ I
i =1 θ

t
i

C = σ 2 

∑ I 
i =1

θt 
i 

b i a t + σ2∑ I 
i =1 θ

t 
i 

D = 

I ∑ 

i =1

s i 
a t b i 

a t b i + σ 2 

then, the surrogate function reduces to 

g(a | a t ) = A ln (Ba + C) − D ln (a ) (65)

with equality at a = a t . The minimizer of the above function under 

positivity constraint is given as 

a t+1 = 
DC 

B (A − D ) 
= 
1

I 

(∑ I
i =1 s i 

a t bi
a t b i + σ 2 

)(∑ I
i =1 σ

2 θ t 
i 

a t b i + σ 2 

)

∑ I 
i =1 

θ t 
i b i 

a t b i + σ 2 

(66) 

Proof. The proof of Propositions 1 and 2 are similar to [22] . ¤
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