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Abstract—The estimation of covariance matrices is a core
problem in many modern adaptive signal processing appli-
cations. For matrix- and array-valued data, e.g., MIMO com-
munication, EEG/MEG (time versus channel), the covariance
matrix of vectorized data may belong to the non-convex set
of Kronecker product structure. In addition, the Kronecker
factors can also exhibit an additional linear structure. Taking
this prior knowledge into account during the estimation
process drastically reduces the amount of unknown param-
eters, and then improves the estimation accuracy. On the
other hand, the broad class of complex elliptically symmetric
distributions, as well as the related complex angular elliptical
distribution, are particularly suited to model heavy-tailed
multivariate data. In this context, we first establish novel
robust estimators of scatter and shape matrices (both related
to a covariance matrix), having a Kronecker product structure
with linearly structured Kronecker factors. Then, we con-
duct a theoretical analysis of their asymptotic performance
(i.e., consistency, asymptotic distribution and efficiency), in
matched and mismatched scenarios, i.e., when misspecifica-
tions between the true and assumed models occur. Finally,
numerical results illustrate the theoretical analysis and assess
the usefulness of the proposed estimators.

Index Terms—Kronecker product, scatter/shape matrix,
structured and robust estimation, M-estimators, complex
elliptically symmetric distributions, misspecified models.

I. Introduction

COVARIANCE matrices estimation plays a central
role in many adaptive statistical signal processing

methods [1]. Besides their Hermitian positive definite
property, the latter usually possess a refined structure
depending on the considered application. For instance,
the Kronecker Product (KP) structure can arise for sepa-
rable statistical models [2], or in diverse scenarios such
as MIMO communication [3] or analysis of MEG/EEG
data [4], [5]. Furthermore, the Kronecker factors may
also have their own structure, e.g., a Toeplitz structure in
MIMO communications with uniform linear array at the
receiver or transmitter side [6]. Taking this prior knowl-
edge into account in the estimation scheme, i.e., reducing
the degree of freedom in the estimation problem, leads
to a better accuracy and thus better performance of the
processing chain. The problem of covariance estimation
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with KP structure and potential linearly constrained
factors has been widely explored in the Gaussian frame-
work [6]–[10], notably by using the Extended Invariance
Principle (EXIP) [11]. Furthermore, other approaches,
dealing with high dimensional data, have been proposed
in [12], [13].

However, assuming a Gaussian model may lead to a
performance degradation in practical applications, since
the latter is not suited for heavy-tailed distributions,
nor in the presence of outliers. This is why, the class
of circular Complex Elliptically Symmetric distributions
(CES) has attracted research interest [14]–[17]. Indeed,
CES distributions encompass the Gaussian model, but
above all, a large number of non-Gaussian distribu-
tions such as Generalized Gaussian, compound Gaus-
sian, t-distribution, K-distribution, etc [18]. In the zero-
mean case, this broad class of distributions is related to
the Complex Angular Elliptical (CAE) distribution [18],
which is obtained by normalizing any centered CES ran-
dom vectors. In the scope of robust estimation, the study
of model misspecifications within this family and their
impact on the performance has also attracted attention
[19]–[22]. Such misspecifications are often unavoidable
in practice, e.g., due to imperfect knowledge of the true
data model.

In the context of robust and structured covariance
estimation, several methods have been recently proposed
[8], [22]–[26]. In [22], efficient robust estimators of con-
vexly structured scatter matrices of CES distributions are
studied, with an analysis of possible misspecifications
on the statistical data model. The counterpart for the
shape matrix of CAE distribution is addressed in [23].
However, these works are inadequate for the consid-
ered case since the KP does not constitute a convex
structure, even for linearly constrained Kronecker fac-
tors. In [8], the Maximum Likelihood (ML) estimator of
KP structured matrices for CAE distributed samples is
studied and can be characterized thanks to the geodesic
convexity of the likelihood function [27]. Similarly [26]
proposes a ML-type KP structured scatter matrix esti-
mator suited for compound-Gaussian distribution. Nev-
ertheless, this result cannot be transposed to linearly
structured Kronecker factors, which do not preserve
the convex geodesic property. In [24] and [25], estima-
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tors have been proposed as minimizers of Tyler’s cost
function, i.e., the likelihood related to CAE distributed
samples [28], for various structures and computed with
Majorization-Minimization algorithms. For a KP of lin-
early constrained factors, several approaches of [24] can
be stacked, yielding an imbrication of convex problems,
which can become computationally costly. This algorith-
mic approach yields good results in practice but cannot
be characterized by statistical properties.

The contributions of this paper are the following:

• we propose and study the statistical properties of
new robust estimators of the scatter/shape matrix
with a KP structure and potential linearly con-
strained Kronecker factors. The proposed method
consists in two main steps, namely an unstructured
M-estimation of the matrix of interest, followed by
an appropriate weighted least-squares problem. The
last stage has a closed-form solution. In addition, re-
cursion of the last step, which consists in iteratively
refining the metric, is empirically exhibiting better
performance at low sample support, by achieving
faster the Cramér-Rao Bound.

• we conduct a theoretical study of the asymptotic
performance of the proposed estimators in several
cases. Under CES distributed samples, we consider
possible misspecifications on the density generator
and we show that the estimate is consistent, in
the sense of the misspecified framework [29], and
is asymptotically Gaussian distributed. The latter
can also be asymptotically efficient, depending on
the chosen first step. Under CAE distributed obser-
vations (i.e., assuming normalized samples drawn
from an arbitrary zero-mean CES distribution), we
show that the proposed procedure yields a con-
sistent, asymptotically efficient and Gaussian dis-
tributed estimate.

• we exhibit simplified expressions of the Cramér-Rao
Bounds, related to the different considered models,
throughout the asymptotic analysis.

This paper is organized as follows. In section II, a brief
review on CES distributions and its related Cramér-Rao
bounds is presented. Section III focuses on the proposed
estimator. The theoretical performance analysis, specif-
ically weak consistency and asymptotic Gaussianity, is
treated in Section IV. The statistical efficiency of the
proposed estimate is addressed in Section V. Section
VI tackles the particular case of robust estimation of
the shape matrix. Some simulations results in Section
VII illustrate the previous theoretical analysis before a
conclusion in Section VIII.

In the following, convergence in distribution and in

probability are, respectively, denoted by
L→ and

P→. The

notation
d
= indicates “has the same distribution as”.

For a matrix X, the operator X† denotes the Moore-
Penrose inverse. |X| and Tr (X) denote the determinant
and the trace of X. XT (respectively XH and X∗) stands
for the transpose (respectively conjugate transpose and

conjugate) matrix. The vec-operator vec(X) stacks all
columns of X into a vector and X � Y implies that
X − Y is positive semi-definite. The operator ⊗ refers to
Kronecker matrix product. The matrix Kk,ℓ denotes the

commutation matrix, satisfying Kk,ℓvec (X) = vec
(
XT

)
for

all X ∈ Ck×ℓ [30]. Im is the identity matrix of size m.
The notation GCN (0,Σ,Ω) refers to the zero mean non-
circular complex Gaussian distribution, where Σ (respec-
tively Ω) denotes the covariance matrix (respectively the
pseudo-covariance matrix) [31], [32]. The operator Ep [·]
refers to the expectation operator w.r.t. the probability
density function (p.d.f.) p, which will be omitted if there
is no ambiguity. Finally, the set of non-negative real
numbers is denoted by R+.

II. Background and Problem Setup

In this section, we recall key elements for the class
of CES distributions, as well as some lower bounds on
the error covariance matrix of estimators, which will be
useful for the following analysis. The reader is referred
to [18] for a complete overview on CES distributions.

A. Complex Elliptical Distributions

A random vector (r.v.), y ∈ Cm is said to be CES dis-
tributed if and only if it admits the following stochastic
representation [18]:

y
d
= m +

√
QSu, (1)

where m ∈ Cm denotes the location parameter and the
matrix S ∈ Cm×k has rank(S) = k. The 2nd-order modular
variate Q is a non-negative real-valued random variable
statistically independent of the complex r.v. u. The latter
r.v. is uniformly distributed on the unit k-sphere CSk ,{
z ∈ Ck | ‖z‖ = 1

}
with k ≤ m. Moreover, under existence

condition, the mean of y is equal to m and the covariance
matrix of y is proportional to the scatter matrix, R = SSH,

i.e., E
[
(y −m)(y −m)H

]
=

1

k
E [Q] R. In the following, we

assume that m is known and equal to zero, without loss
of generality and that r.v. y is absolutely continuous, so
k = m and rank(R) = m. In this case, the p.d.f. of such a
vector exists and is expressed by [18]:

pY(y; R, g) = Cm,g|R|−1g
(
yHR−1y

)
, (2)

in which the function g : R+ → R+ is called the

density generator satisfying δm,g ,

+∞∫

0

tm−1g(t)dt < ∞ and

Cm,g =
Γ(m)

πm
δ−1

m,g is the normalizing constant. In this case

and thereafter, we shorten such r.v. by the notation y ∼
CESm

(
0,R, g

)
. As noted above, various non-Gaussian

distributions (e.g., Generalized Gaussian, t-distribution,
K-distribution, etc.) fall into this large class. Expressions
of density generator function can be found in [22, Table
1] for commonly used CES distributions.
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B. Cramér-Rao Bounds

In the context of deterministic parameter estimation,
the derivation of lower bounds on the error covariance
matrix is widespread in order to characterize the ulti-
mate performance that an estimator can achieve. Among
them, the so-called Cramér-Rao Bound (CRB) and its
variants are commonly used. The latter is related to
the Fisher Information Matrix (FIM), of which a closed-
form expression is given in [33] for CES distributions.
Notably for a centered circular complex CES distribution
with scatter matrix R parameterized by µ ∈ Rn, i.e.,

CESm

(
0,R(µ), g

)
, the FIM expression is given by:

F
(
µ
)
=

(
∂r(µ)

∂µT

)H

Y
∂r(µ)

∂µT
(3)

where Y = σ−1
1,ML

W−1
R + (σ−1

1,ML
− 1)vec

(
R−1

)
vec

(
R−1

)H
in

which WR = RT ⊗ R, σ1,ML =
m(m + 1)

E

[
ψ2

ML (|t|2)
] ∈

]
0,

m + 1

m

[
,

with t ∼ CESm
(
0, I, g

)
and ψML(s) = − sg′(s)

g(s)
. The matrix

∂r(µ)

∂µT
refers to the Jacobian matrix of r(µ) = vec

(
R(µ)

)
.

For the particular case of the Gaussian distribution, we
retrieve the Slepian-Bang’s formula.

For unconstrained and identifiable models, the FIM is
not singular. Thus, the Mean Square Error (MSE) of any
unbiased estimator µ̂ of µ can be lower bounded by the
inverse of the FIM, which is then referred to as the CRB.
Specifically, we have

E

[(
µ̂ − µ

) (
µ̂ − µ

)T
]
� F−1

(
µ
)
, CRBµ. (4)

In case of equality in (4) in the (in)finite-sample regime,
the estimator µ̂ is then considered to be (asymptotically)
efficient.

In some cases, the estimator µ̂ must satisfy a set of k <
n continuously differentiable non redundant constraints
[34], [35],

h
(
µ̂
)
= 0 (5)

which must be consistent, i.e., the set
{
µ |h

(
µ
)
= 0

}
is

nonempty [35]. Then, we introduce a matrix U ∈ Rn×(n−k),
whose columns form an orthonormal basis for the
nullspace of the Jacobian matrix of h

(
µ
)
, i.e.,

∂h
(
µ
)

∂µT
U = 0 and UTU = In−k.

In this context, a Constrained version of the CRB (CCRB)
has been introduced in [35] for any unbiased estimate of
µ satisfying (5), given by

E

[(
µ̂ − µ

) (
µ̂ − µ

)T
]
� U

(
UTF

(
µ
)

U
)−1

UT
, CCRBµ (6)

In most estimation problems, the perfect knowledge
of the data model generally turns out to be a key

assumption. However, model misspecifications are often
unavoidable in practice, due to incomplete knowledge of
the true data model for instance [19]. The p.d.f. related
to the true (respectively assumed) model is then denoted
by p(·) (respectively fµ(·)). An extension of the classical
CRB has been derived in [20], [29], [36], leading to the
Misspecified Cramér-Rao Bound (MCRB). Before deriv-
ing the MCRB, the so-called pseudo-true parameter vector,
µ0, is classically introduced for an asymptotic analysis
[19], [29], [36]. The latter is defined as a minimizer of
the Kullback-Leibler divergence (KLD) between the true
and the assumed models, specifically:

µ0 = arg min
µ

D
(
p‖ fµ

)
= arg max

µ
Ep

[
log fµ

(
z;µ

)]
, (7)

where D
(
p‖ fµ

)
, Ep


log

p
(
z;µe

)

fµ
(
z;µ

)

. In the following, we

always assume the existence and the uniqueness of this
pseudo-true parameter vector (the reader is referred to
[36] for necessary and sufficient conditions). From [29],
the related MCRB and the error covariance matrix of
an unconstrained and unbiased estimate µ̂ of µ0 are
connected through

E

[(
µ̂ − µ0

) (
µ̂ − µ0

)T
]
� Γ−1

µ0
Υµ0
Γ−1
µ0
,MCRBµ0

(8)

where Γµ = Ep

[
∂2 log fµ

∂µ ∂µT

]
and Υµ = Ep

[
∂ log fµ

∂µ

∂ log fµ

∂µT

]
.

For misspecifications on the density generator function
of CES distributions, MCRBµ0

of (8) has been explicitly
derived in [22], [29]. Likewise in case of equality in (8)
in the (in)finite-sample regime, the estimator µ̂ is then
called to be (asymptotically) m-efficient.

Finally, in a similar manner as the CCRB, a Con-
strained version of the MCRB (CMCRB) has been intro-
duced in [21] for any unbiased estimate of µ0 satisfying
(5), expressed by

E

[(
µ̂ − µ0

) (
µ̂ − µ0

)T
]
� U

(
UTΓµ0

U
)−1

UTΥµ0
U

×
(
UTΓµ0

U
)−1

UT
, CMCRBµ0

(9)

C. Problem Setup

Let us consider K i.i.d. zero mean CES distributed ob-
servations, denoted by yk ∼ CESm

(
0,Re, g

)
, k = 1, . . . ,K.

The true p.d.f. is denoted by pY

(
yk; Re

)
. Note that the

function g(·) is not assumed to be known and is not
leveraged in the following algorithm. In other words, we
only assume that data are drawn from an unspecified
centered CES distribution CESm

(
0,R, gmod

)
, where the

assumed density generator gmod(t) may be different from
g(t) for all t ∈ R+. The related p.d.f. is then denoted by

fY
(
yk; R

)
.

The scatter matrix R is assumed to be structured as a
KP, i.e.,

Re = Ae ⊗ Be (10)
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where Ae ∈ Cn×n and Be ∈ Cp×p, also called Kronecker
factors, are positive definite Hermitian matrices. We
assume that the latter are linearly parameterized by
θA ∈ RnA and θB ∈ RnB respectively, such that

vec (A) , a = PAθA and vec (B) , b = PBθB (11)

with nA ≤ n2, nB ≤ p2 and where PA and PB are known
full column rank matrices. This parameterization allows
a potential refined structure on the Kronecker factors,
such as persymmetric, Toeplitz, banded, etc. We denote

the concatenated parameter vector by θ =
[
θT

A , θ
T
B

]T
,

with exact value θe and Re = R (θe) , A
(
θAe

) ⊗ B
(
θBe

)
.

The latter is the parameter vector of interest, that one
aims to estimate. The dependance on θwill be omitted in
the following, if there is no ambiguity. It is worth noting
that the KP structure is by nature scale ambiguous,
because

(
γA

) ⊗
(
γ−1B

)
= A ⊗ B for any γ , 0.

Since we aim to study estimators of the structured scatter
matrix and not of the parameter vector, this ambiguity
is irrelevant. However in the following analysis, a con-
straint ensuring the model identifiability w.r.t. θ, and
thus the bijectivity of θ 7→ R (θ), will be added when
required. In the below derivations, we will consider the
following constraint

(C) c (θ) ,
1

n
vec

(
InA

)T
PAθA − 1 = 0 ⇔ Tr (A) = n.

Note that the considered misspecification only concerns
the density generator function and not the scatter matrix
structure, since the latter is usually derived from physi-
cal considerations on the measurement system.

The minimization of the assumed likelihood function
w.r.t. θ is generally a complex and time-consuming task.
To bypass this issue, we propose a new and tractable
estimation procedure in the next section. Furthermore,
our approach is still usable when the access to raw data
is impossible, which is especially relevant in applications
such as radio-astronomy [37], [38], where the data is too
large to be handled and where practitioners have only

access to intermediate estimates R̂.

III. Proposed Algorithm

In this section, we introduce a structured estimator of
the scatter matrix Re, which consists of a procedure with
two main steps. The latter takes into account the under-
lying KP structure and the potential refined structure of
the Kronecker factors. Specifically, we first compute an

unstructured estimate of Re, denoted by R̂. Then, we
impose the structure by solving an appropriate weighted
covariance fitting, inspired from [7]. For notational ac-
commodation, we skip the dependence on K for the
estimators obtained from K samples when there is no
ambiguity.

A. Step 1: unstructured M-estimation of Re

From a set of K i.i.d. yk ∼ CESm
(
0,Re, g

)
, k = 1, . . . ,K

with K > m , np, an unstructured M-estimator of the
scatter matrix is given by the solution of the following
fixed-point equation [18]:

R̂ =
1

K

K∑

k=1

u
(
yH

k R̂
−1

yk

)
ykyH

k , HK(R̂) (12)

where the choice of the function u(·) is quite loose,
while some constraints are met [18], [39]. Specifically, the
function u(·) must be non-negative, continuous on [0,∞),
non-increasing such that ψ(s) = su(s) is increasing, upper
bounded, say, by Kψ < ∞ and strictly increasing on the
interval where ψ(s) < Kψ. Existence and uniqueness of
the solution of (12) have been studied in [18]. In addition,
the latter can be easily computed with the iterative algo-

rithm Ri+1 = HK(Ri) which converges to R̂ whatever the
initialization [18]. Furthermore, the asymptotic behavior

of R̂ is well-known [18, Theorem 9], specifically:

R̂
P→ σ−1Re and

√
K

(
r̂ − σ−1re

) L→ GCN (
0,Σ,ΣKm,m

)
(13)

where r̂ = vec
(
R̂

)
, re = vec (Re), WRe

= RT
e ⊗ Re,

Σ = σ−2
(
σ1WRe

+ σ2re rH
e

)
and



σ1 =
a1(m + 1)2

(a2 +m)2
, σ2 =

a1 − 1

a2
2

− a1(a2 − 1)
m + (m + 2)a2

a2
2
(a2 +m)2

,

a1 =
E

[
ψ2

(
σ|t|2

)]

m(m + 1)
, a2 =

1

m
E

[
σ|t|2ψ′

(
σ|t|2

)]
> 0

in which σ is the solution of E
[
ψ(σ|t|2)

]
= m with

t ∼ CESm
(
0, I, g

)
and ψ(s) = su(s). For the particu-

lar case of unstructured ML estimation, obtained when
u(s) = − g

′
(s)/g(s) , uML(s) in (12) and thus ψ(·) = ψML(·),

a subscript ML is added for σ2,ML, which can also be
expressed as

σ2,ML = −
σ1,ML

(
1 − σ1,ML

)

1 +m
(
1 − σ1,ML

) .

For common CES distributions, explicit expressions of
σ1,ML and σ2,ML are given in [22, Table 1].

B. Step 2: covariance fitting

For the second step, we enforce the KP structure
with linearly parameterized factors by minimizing the
following covariance matching

V (θ) =
∥∥∥∥Q1/2vec

(
R̂ −A (θA) ⊗ B (θB)

)∥∥∥∥
2

2
(14)

As detailed later in Section V, the obtained estimate
may be statistically efficient, depending on the choice of
the matrix Q. The minimization of (14) can be achieved
through an alternating optimization scheme. However,
with an appropriate choice of Q, a minimizer of (14) can
be efficiently found using the Singular Value Decompo-
sition (SVD) [40].
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First, let us introduce the following rearrangement of
a matrix R [40]:

R (R) =
[
vec

(
R11

)
. . . vec

(
Rn1

)
vec

(
R12

)
. . . vec (Rnn)

]T

where Rkℓ is (k, ℓ)th block of size p× p of R satisfying the
following properties

R (A ⊗ B) = vec (A) vec (B)T and vec (R) = PRvec (R (R))

with PR a permutation matrix.
Now, we assume that the matrix Q can be written as

Q = R−T ⊗ R−1 (15)

where R also possesses a KP structure, i.e. R = A ⊗ B.
A method providing such a matrix Q is proposed just
after. With this particular structure of Q, the function
(14) can be equivalently reformulated as a rank-one
approximation problem (See [7, Section V.])

V1 (θ) =
∥∥∥∥QH

AR
(
Ř

)
Q∗

B − TAθAθ
T
BTT

B

∥∥∥∥
2

F
(16)

where
Ř =

(
A−1/2 ⊗ B−1/2

)
R̂

(
A−1/2 ⊗ B−1/2

)
,

QATA =
(
A−T/2 ⊗A−1/2

)
PA, QBTB =

(
B−T/2 ⊗ B−1/2

)
PB

in which QA ∈ Cn2×nA and QB ∈ Cp2×nB have orthonormal
columns vectors and TA and TB are invertible matrices.
Since minimizing (16) is a rank-one approximation prob-
lem, this can be efficiently achieved using an SVD of the

matrix QH
AR

(
Ř
)

Q∗
B [40].

To obtain the desired matrix Q as in (15), it is simply
enough to minimize, a first time, (14) or equivalently
(16) with Q = Im2 . To resume, Step 2 is divided into two
sub-steps:

1) Minimize (14) with Q = Im2 , which yields a mini-

mizer θ̂int =

[
θ̂

T

A,1 , θ̂
T

B,1

]T

and build Q̂ = R̂
−T

int ⊗ R̂
−1

int

where R̂int = R
(
θ̂int

)
, A

(
θ̂A,1

)
⊗ B

(
θ̂B,1

)

2) Minimize (14) with Q = Q̂, which provides θ̂ =[
θ̂

T

A , θ̂
T

B

]T

and therefore the final structured estimate

R̂KPr = R
(
θ̂
)
, A

(
θ̂A

)
⊗ B

(
θ̂B

)
.

Remark. It is worth noting that the minimized function (16)
does not coincide with the EXIP approach, since the weighted
matrix Q is not the inverse of the (asymptotic) covariance ma-

trix of vec
(
R̂ − Re

)
given by (13). An EXIP-based procedure

could be applicable, but the equivalence between (14) and (16)
would be lost and would require an alternating optimization
scheme to solve the corresponding weighted covariance fitting.
Similarly, it is not a particular case of [22], since the KP is
not a convex structure.

Remark. We will show, in the next sections, that the inter-
mediary estimate R̂int is only consistent, whereas R̂Kpr may
also be asymptotically efficient.

Algorithm 1 Algorithm for the scatter matrix

Input: K i.i.d. data, yk ∼ CESm
(
0,Re, g

)
with K > m

1: Compute R̂ from y1, . . . ,yK with (12).

2: Find a minimizer θ̂int =

[
θ̂

T

A,1 , θ̂
T

B,1

]T

of (14) with Q =

Im2 .

Build Q̂ = R̂
−T

int⊗R̂
−1

int where R̂int = R
(
θ̂int

)
, A

(
θ̂A,1

)
⊗

B
(
θ̂B,1

)
.

Find a minimizer θ̂ =
[
θ̂

T

A , θ̂
T

B

]T

of (14) with Q = Q̂.

3: (Optional) Compute iteratively the solution of (17)
Nit times.

4: Return: R̂(R)−KPr = R
(
θ̂
)
= A

(
θ̂A

)
⊗ B

(
θ̂B

)

C. Step 3 (optional): iteration of Step 2

In this subsection, we propose an additional optional
step for the estimator, which is based on an iterative
refinement of the cost function V (θ). As set out futher
in Section IV, this extra step provides an estimator,
which preserves the asymptotic behavior but empirically
improves the performance in the pre-asymptotic regime.

In the cost function V (θ) in (14), the weighted matrix
Q can be viewed as a metric specification. Consequently,

better the estimate Q is, the better a solution θ̂ minimiz-
ing (14) should be. Moreover, to keep benefiting from the
equivalence between the minimization problems in (14)
and (16), the matrix Q has to be doubled KP structured
as in (15). Thus, we proposed to iteratively substitute

R
(
θ̂int

)
in Q̂ by R

(
θ̂
)

obtained at the previous iteration.
Specifically, for a finite number Nit of iterations, we
solve, at the ℓ-th iteration, the problem

θ̂ℓ+1 = arg min
θ

∥∥∥∥∥Q̂
1/2

ℓ vec
(
R̂ −A (θA) ⊗ B (θB)

)∥∥∥∥∥
2

2
(17)

where Q̂ℓ = R
(
θ̂ℓ

)−T
⊗ R

(
θ̂ℓ

)−1
and with Q̂0 = Q̂. This

yields the final structured estimate R̂R−KPr = R
(
θ̂Nit

)
.

Since we assume Nit < ∞, the existence of θ̂Nit
is always

ensured. In practice, we can use a more flexible imple-
mentation rather than imposing a fixed number of iter-
ations. For example, the stopping criterion can combine
a maximal number of iterations, Nit, and a relative gap
between the estimates of two successive iterations below
a defined threshold, εtol, i.e.,

∥∥∥∥θ̂ℓ+1 − θ̂ℓ
∥∥∥∥ ≤ εtol

∥∥∥∥θ̂ℓ
∥∥∥∥. The

proposed algorithm is summarized in the box Algorithm
1.

Remark. The proposed algorithm differs from the one given
in [7] in several points. First, we leverage the entire family
of M-estimators, instead of the sample covariance matrix,
which brings robustness. Second, the intermediary estimate

R̂int possesses the full structure (KP + linearly parameterized
factors) and not just the KP one. Last, we propose an optional
recursive step, which provides better results at low sample
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support.

IV. Asymptotic Behavior of the ProposedMethod

This section provides a statistical analysis of the pro-

posed estimator R̂KPr = R
(
θ̂K

)
, where θ̂K is a minimizer

of (14) with Q = Q̂ = R̂
−T

int ⊗ R̂
−1

int. Specifically, we study
the consistency and the asymptotic distribution of the
estimate.

Theorem 1. Under the considered data model, the es-
timator R̂KPr is consistent w.r.t. σ−1Re. In addition, if

θ̂K satisfies the constraint (C), then θ̂K
P→ θc such that

Rc , R (θc) = σ−1Re and θc meet the constraint (C).
Recall that σ is the solution of E

[
ψ(σ|t|2)

]
= m with

t ∼ CESm
(
0, I, g

)
and ψ(s) = su(s).

Proof. First, the consistency of R̂ leads straightforwardly

to the one of R̂int for σ−1Re and thus Q̂
P→ σ2W−1

Re
,

which is a full-rank matrix. Then, in a similar man-

ner, we obtain R̂KPr
P→ σ−1Re. Moreover, if θ̂K satisfies

the constraint (C), then the continuous mapping yields

θ̂K
P→ θc. �

Remark. Since the parameterization is linear w.r.t. θA and

θB, this easily leads to θc =

[
θAc

θBc

]
=



InA

0

0
1

σ
InB



[
θAe

θBe

]
, where

θe is assumed to meet the constraint (C).

Theorem 2. Under the considered data model, the
asymptotic distribution of R̂KPr is given by

√
Kvec

(
R̂KPr − Rc

) L→ GCN
(
0,Ξ,ΞKnp,np

)
with

Ξ = σ−2
PR

(
σ1

p

(
bebH

e

)
⊗ PAF−1

A PH
A +

σ1

n
PBF−1

B PH
B ⊗

(
aeaH

e

)

+

(
σ2 −

σ1

np

) (
bebH

e

)
⊗

(
aeaH

e

))
PR

H (18)

where ae = vec (Ae), be = vec (Be), FA = PH
AW−1

Ae
PA, FB =

PH
B W−1

Be
PB in which WAe

= AT
e ⊗Ae and WBe

= BT
e ⊗ Be.

Proof. The proof of Theorem 2 is quite standard, however
a few subtleties should be carrefully addressed. Here, we
describe the main steps for the considered case. In order
to apply the Delta method [41], we perform a Taylor
expansion around θc of the gradient of the cost function

V (θ) evaluated in θ̂K, which satisfies the constraint (C):

0 =
∂V (θ)

∂θ

∣∣∣∣∣
θ̂K

=
∂V (θ)

∂θ

∣∣∣∣∣
θc

+
∂2V (θ)

∂θ ∂θT

∣∣∣∣∣∣
ξK

(
θ̂K − θc

)

with ξK on the line segment connecting θc and θ̂K, i.e.,

∃ c ∈ ]0, 1[ such that ξK = cθc + (1 − c)θ̂K [42, Theorem

5.4.8]. Thus the consistency of θ̂K implies ξK
P→ θc. On

one hand, the consistency of R̂ yields

H (ξK) =
∂2V (θ)

∂θ∂θT

∣∣∣∣∣∣
ξK

P→ 2ΓH
c PHW−1

Rc
PΓc , H∞

with P = PR (PB ⊗ PA), Γc , Γ (θc) =
[
θBc

⊗ InA
, InB

⊗ θAc

]

and WRc
= RT

c ⊗Rc. Note that the matrix H∞ is singular
and real-valued. On the other hand, we obtain similarly
as in [22, Section 4.2]



√
KgK (θc) =

√
K
∂V (θ)

∂θ

∣∣∣∣∣
θc

L→N (0,R∞) with

R∞ = 4ΓH
c PH

[
σ1W−1

Rc
+ σ2vec

(
R−1

c

)
vec

(
R−1

c

)H
]

PΓc

Furthermore, we can write, as in [7, Section VII]
√

KPΓc

(
θ̂K − θc

)
= PΓcH

† (ξK)
√

KgK (θc)

which leads, by the Delta-method derived for complex-
valued parameters [43], to

√
KPΓc

(
θ̂K − θc

) L→ GCN
(
0,Ξ,ΞKnp,np

)
(19)

where Ξ = PΓcH
†
∞R∞H†

∞Γ
H
c PH, can be simplified as

requested, by using Lemma 1 in Appendix A with α1 = 1
and α2 = 0. The proof is concluded by performing a

Taylor expansion around θc of vec (R (θ)) = Pvec
(
θAθ

T
B

)

evaluated in θ̂K, which yields

vec
(
R̂KPr − Rc

)
= P

∂θB ⊗ θA

∂θT

∣∣∣∣∣
ξK

(
θ̂K − θc

)

with
∂θB ⊗ θA

∂θT

∣∣∣∣∣
ξK

P→ Γc and thus, by Slutsky’s lemma,

√
Kvec

(
R̂KPr − Rc

) L→ GCN
(
0,Ξ,ΞKnp,np

)
. (20)

�

Remark. The exhibited multivariate non-circular complex
Gaussian distribution is degenerate w.r.t the Lebesgue mea-
sure, since the matrix Ξ is not full rank. This is due to the
fact that R is parameterized by θ and then considering all the
elements of R brings redundancies.

Corollary 1. The estimator R̂R-KPr obtained with the
additional Step 3 is consistent and follows the same
asymptotic Gaussian distribution as in (20).

Proof. Theorems 1 and 2 are valid at each iteration,
which concludes the proof. �

Remark. While a covariance/scatter matrix is known to be
positive semi-definite (p.s.d.), this constraint is not enforced
on the estimate provided by Algorithm 1. However, due to

the consistency of R̂KPr, the latter will be p.s.d. for sufficiently
large K with a probability arbitrarily close to one.

V. Statistical Efficiency of theMethod

In this section, we examine how the proposed es-
timator is doing compared to the ultimate achievable
performance. Specifically, we compare the asymptotic
error covariance matrix Ξ exhibited in the previous
section with the CRB depending on the assumed model
and the choice of the function u(·) in (12).

Proposition 1. Let us consider K i.i.d. centered CES dis-
tributed observations, denoted by yk ∼ CESm

(
0,Re, g

)
,
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k = 1, . . . ,K. The CRB for vec (Re), denoted by CRBre
, is

given by:

CRBre =
1

K
PR

(
σ1,ML

p

(
bebH

e

)
⊗ PAF−1

A PH
A +

σ1,ML

n
PBF−1

B PH
B ⊗

(
aeaH

e

)

+

(
σ2,ML −

σ1,ML

np

) (
bebH

e

)
⊗

(
aeaH

e

))
PR

H (21)

Proof. From (3), the unconstrained FIM is given by

F (θe) = KΓH
e PH

(
σ−1

1,ML
W−1

Re
+ (σ−1

1,ML
− 1)vec

(
R−1

e

)
vec

(
R−1

e

)H
)

PΓe

where Γe = Γ (θe). The matrix F (θe) is singular since the
mapping between θ and R is many-to-one due to the
scale ambiguity. In order to obtain the CRB for estimators
of vec (R), we use the results of [35] with the CCRB,
which yields

CRBre
= PΓeCCRBθe

ΓH
e PH = PΓeU

(
UTF (θe) U

)−1
UTΓH

e PH

where U ∈ R(nA+nB)×(nA+nB−1) is an orthonormal basis for
the nullspace of the gradient of the constraint (C) [35],
specifically

UTU = InA+nB−1 and
∂c (θ)

∂θT
U = 0.

Without loss of generality, the matrix U can be chosen
structured as

U =

[
UA 0
0 InB

]
with UA ∈ RnA×(nA−1) (22)

such that UT
AUA = InA−1. By using Lemma 2 in Appendix

B with α1 = σ−1
1,ML

> 0 and α2 = σ−1
1,ML

− 1 > −α1/(np), we
can rewrite CRBre as stated. �

To recall, we considered the case, where there exists
a potential misspecification on the density generator
function of the statistical data model. Notably, the sam-
ples are truly drawn from an unknown centered CES
distribution CESm

(
0,Re, g

)
, but the assumed model is

provided by CESm
(
0,R, gmod

)
. Therefore, we introduce

the following mismatched analysis tools.

Proposition 2. With the considered misspecification on
the density generator function, the so-called pseudo-true
parameter vector θ0, which minimizes the KLD between
the true and the assumed models D (

pY‖ fθ
)
, is defined by

R (θ0) = σ−1Re = Ae ⊗
(
σ−1Be

)
= Rc (23)

where σ is the solution of E
[
ψmod(σ|t|2)

]
= m with t ∼

CESm
(
0, I, g

)
and ψmod(s) = −sg

′

mod
(s)/gmod(s). To ensure

the uniqueness of θ0, we assume that θ0 has to satisfy
the constraint (C). If the weight function u(·) of (12) is of
the form u(s) = −g

′

mod
(s)/gmod(s), thus θ0 = θc

Proof. The derivation to obtain (23) is identical to [22,
Corollary 1]. �

Proposition 3. For the considered misspecification on
the data model, the MCRB for vec (Rc), denoted by

MCRBrc
, is given by:

MCRBrc =
σ−2

K
PR

(
σ1

p

(
bebH

e

)
⊗ PAF−1

A PH
A +

σ1

n
PBF−1

B PH
B ⊗

(
aeaH

e

)

+

(
σ2 −

σ1

np

) (
bebH

e

)
⊗

(
aeaH

e

))
PR

H (24)

Proof. We obtain the MCRB for vec (Rc) from the CMCRB
for θc by using the following relation

MCRBrc
= PΓcCMCRBθc

ΓH
c PH

where CMCRBθc
can be obtained from (8) and (9)

CMCRBθc
=

1

K
U

(
UTC1U

)−1
UTC2U

(
UTC1U

)−1
UT

in which


C1 = Γ
H
c PH

(
− a2 +m

m + 1
W−1

Rc
+

1 − a2

m + 1
vec

(
R−1

c

)
vec

(
R−1

c

)H
)

PΓc

C2 = Γ
H
c PH

(
a1W−1

Rc
+ (a1 − 1)vec

(
R−1

c

)
vec

(
R−1

c

)H
)

PΓc

Similarly, by using Lemma 2 in Appendix B with

α1 =
a2 +m

m + 1
> 0 and α2 =

a2 − 1

m + 1
> −α1/m, we simplify

U
(
UTC1U

)−1
UT and then obtain the intended expression

of MCRBrc
. �

Theorem 3. Let us consider K i.i.d. centered CES dis-
tributed samples, denoted by yk ∼ CESm

(
0,Re, g

)
, k =

1, . . . ,K. These observations are assumed to follow a
CESm

(
0,R, gmod

)
in the estimation process. According

to the choice of the function u(·) in (12), we obtain the
following statements :

(i) if gmod(·) = g(·) and u(s) = − g′(s)

g(s)
, then R̂KPr and

R̂R-KPr are asymptotically efficient.

(ii) if gmod(·) , g(·) and u(s) = −
g′

mod
(s)

gmod(s)
, then R̂KPr and

R̂R-KPr are asymptotically m-efficient.
(iii) if u(·) cannot be written as one of the above forms

(e.g., Huber’s M-estimator [18]), nothing more than
Theorem 1 and 2 can be elaborated on the asymp-

totic behavior of R̂KPr.

Proof. For the case (i), this particular choice of function
u(·) coincides with the unstructured ML estimate as step
1. Thus, the coefficient σ is equal to σ = 1 and θc = θe.
Consequently, the asymptotic error covariance in (18)
can be rewritten by substituting σ1 and σ2 by σ1,ML and
σ2,ML and finally coincides with CRBre

in (21). For the
case (ii), we note that the asymptotic error covariance
in (18) coincides with the MCRBrc

in (24). For the case
(iii), the function u(·) is not related to a p.d.f. of a CES
distribution. Thus, the mismatched framework can not
be applied; however the chosen M-estimator is well-
defined so the statistical characterization reported in (18)
holds.

The parameter vector vec (R) being complex-valued,
the intended results are easily achievable by working on
the vector concatenating the real and imaginary parts of
vec (R) and noting that ΞT = Knp,npΞKnp,np. �
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Remark. Note that the case (i) of Theorem 3 is unrealistic,
and has a purely theoretical interest.

VI. Robust Structured Estimator of the ShapeMatrix

In this section, we consider the particular case of KP
structured shape matrix robust estimation. Indeed, one
may only require an estimate of the shape of the scatter
matrix, i.e., to capture the intrinsic structure of the matrix
without needing its scale. This occurs for scale-invariant
processings, i.e., involving a zero degree homogeneous
function of the scatter matrix. For instance, we can cite
the adaptive normalized matched filter detector [44] or
the MUSIC method. The proposed method for this case
is quite similar to the one introduced in Section III.
Likewise, we conduct a theoretical asymptotic analysis
of the proposed estimator.

A. Reminders on Robust Statistical Model

The class of CES distributions covers various statistical
models, due to the diversity of density generator func-
tions. However as studied previously, this may lead to
misspecifications if the density generator is improperly
chosen. Nevertheless, any CES distributions are related
to a common CAE distribution [18]. It is worth noting
that this interesting property is only valid for centered
CES distributions. Let be y ∼ CESm

(
0,R, g

)
, then the

normalized vector

z =
y

‖y‖ ,y , 0,

follows a CAE distribution, denoted by z ∼ CAEm (R).
The r.v. z has the following p.d.f. w.r.t. spherical measure
which is the natural Borel measure on the unit m-sphere
CS

m [45]

p(z | R) ∝ |R|−1
(
zHR−1z

)−m
(25)

Note that, in this context of CAE distribution, the matrix
R is scale ambiguous, i.e., defined up to an arbitrary
scale factor. To avoid scaling ambiguity, we introduce
the matrix V = mR/Tr (R), which is referred to as the
shape matrix of z.

In addition, for CAE distribution with shape matrix V

parameterized by µ ∈ Rn, i.e., CAEm

(
V(µ)

)
, the FIM can

be written as

FCAE

(
µ
)
=



∂vec

(
V(µ)

)

∂µT




H

YCAE

∂vec
(
V(µ)

)

∂µT
(26)

where YCAE =
m

m + 1
W−1

V − 1

m + 1
vec

(
V−1

)
vec

(
V−1

)H
,

which is rank-deficient and WV = VT ⊗V.

Formally, we consider a shape matrix, exhibiting the
same structure as Re

Ve =
m

Tr (Re)
Re =

(
nAe

Tr (Ae)

)
⊗

(
pBe

Tr (Be)

)
,

∼
Ae ⊗

∼
Be (27)

where the parameterizations in (10) and (11) are still
relevant for V = V (θ), if the following constraint are
met

(C1) c1 (θ) ,




1

n
vec

(
InA

)T
PAθA − 1

1

p
vec

(
InB

)T
PBθB − 1



= 0⇔

{
Tr (A) = n
Tr (B) = p

which ensures that Tr (V (θ)) = Tr (A) Tr (B) = np = m.

B. Algorithm

From a set of K i.i.d. zk ∼ CAEm (Ve) , k = 1, . . . ,K with
K > m, we first compute a ML-type estimate of the shape
matrix, for which the full structure V (θ) is not taken into
account. For this, two solutions can be deployed:

• the unstructured ML estimate, coinciding with
Tyler’s M-estimate [28], which is given by the so-
lution of the following fixed-point equation [18]:

V̂ =
m

K

K∑

k=1

zkzH
k

zH
k

V̂
−1

zk

such that Tr
(
V̂

)
= m (28)

The above solution can be obtained by an iterative
algorithm, in a similar manner as (12).

• the KP structured ML estimate, given in [8] and

denoted by V̂KP. The latter is obtained using an
alternating optimization scheme, which converges
towards the global minimum of the related likeli-
hood function [8].

In the literature, Tyler’s M-estimate is said to be
distribution-free, since equation (28) does not involve
any data-dependant function g. The latter can be used
as shape estimator for any centered multivariate dis-
tribution, but it is optimal, in the ML sense, for CAE
distribution.

Remark. Since V̂KP already possesses the KP structure, it

seems more appealing than the unstructured V̂. In addition,
the constraint on the number of samples, i.e., K > m, can be

strongly relaxed for V̂KP [8]. However, the computational cost

of the latter is higher than the one of V̂.

Then, we apply Step 2 of Section III to obtain an

unconstrained but structured R̂KPr, for which we replace

R̂ by V̂ or V̂KP. Similarly as Algorithm 1, the addi-
tional/optional iteration of Step 3 is still valid. Finally,

we compute V̂KPr = mR̂KPr/Tr
(
R̂KPr

)
. The algorithm can

be summarized in a very similar manner as the box
Algorithm 1.

C. Asymptotic Analysis

Similarly as Section IV, we perform an analysis of the

asymptotic performance of V̂(R)−KPr.

Proposition 4. Let us consider K i.i.d. centered CAE
distributed observations, denoted by zk ∼ CAEm (Ve),
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k = 1, . . . ,K. The CRB for vec (Ve), denoted by CRBve
, is

given by:

CRBve
=

m + 1

mK
PR

(
1

p

(
b̃eb̃

H
e

)
⊗

[
PAF−1

Ã
PH

A + ηãeãH
e − χA

]

+
1

n

[
PBF−1

B̃
PH

B + η1b̃eb̃
H
e − χB

]
⊗

(
ãeãH

e

))
PR

H (29)

where ãe = vec
( ∼
Ae

)
, b̃e = vec

(∼
Be

)
, FÃ = PH

AW−1
Ãe

PA,

FB̃ = PH
B W−1

B̃e
PB, WÃe

=
∼
A

T

e ⊗
∼
Ae, WB̃e

=
∼
B

T

e ⊗
∼
Be,

η = uT
A

F−1
Ã

uA, η1 = uT
B
F−1

B̃
uB, in which uT

A
= vec (In)T PA/n,

uT
B
= vec

(
Ip

)T
PB/p and with


χA = PAF−1

Ã
uAãH

e + ãeuT
A

F−1
Ã

PH
A

χB = PBF−1
B̃

uBb̃
H
e + b̃euT

B
F−1

B̃
PH

B

.

Proof. We obtain the CRB for vec (V) by using the fol-
lowing relation

CRBve
= PΓeU1

(
UT

1 FCAE (θe) U1

)−1
UT

1Γ
H
e PH

where U1 ∈ R(nA+nB)×(nA+nB−2) is an orthonormal basis for
the nullspace of the gradient of the constraint (C1) [35],
specifically

UT
1 U1 = InA+nB−2 and

∂c1 (θ)

∂θT
U1 =

[
uT

A
0

0 uT
B

]
U1 = 0.

Without loss of generality, the matrix U1 can be chosen
structured as

U1 =

[
UA 0
0 UB

]
with UA ∈ RnA×(nA−1),UB ∈ RnB×(nB−1) (30)

such that UT
AUA = InA−1 and UT

BUB = InB−1. By using
Lemma 3 in Appendix C, we can rewrite CRBve as
announced in (29). �

Theorem 4. Under the considered CAE model, the pro-

posed shape matrix estimator V̂(R)−KPr is a consistent,
asymptotically efficient and Gaussian distributed esti-

mate of Ve, for both V̂ or V̂KP as Step 1.

Proof. The consistency is a direct result of Theorem 1

with σ = Tr (Re) /m since V̂
P→ Ve [18] and V̂KP

P→
Ve [8], respectively. In order to obtain the asymptotic

distribution of vec
(
V̂KPr

)
, we reuse Theorem 2 and its

proof, giving the asymptotic distribution of vec
(
R̂KPr

)
.

The derivations are all the same, except the expression
of R∞, which is given, in this case, by

R∞ = 4ΓH
c PHW−1

Ve
ΣVW−1

Ve
PΓc.

where WVe
= VT

e ⊗ Ve and ΣV denotes the asymptotic

covariance matrix, up to a factor K, of either V̂ or V̂KP.
For the first case, the expression of ΣV can be found in
[18, Section VI.C.]. For the second one, the matrix ΣV is
given by (29), derived for the KP structure only, i.e., the

Kronecker factors are simply Hermitian. We recall that
√

Kvec
(
R̂KPr − σ−1Re

) L→ GCN
(
0,Ξ,ΞKnp,np

)

where Ξ = PΓcH
†
∞R∞H†

∞Γ
H
c PH with H∞ = 2ΓH

c PHW−1
Ve

PΓc.

Finally, the Delta-method on V̂KPr = mR̂KPr/Tr
(
R̂KPr

)
,

leads to
√

Kvec
(
V̂KPr −Ve

) L→ GCN
(
0,ΨΞΨH,ΨΞΨHKnp,np

)
.

with Ψ = I − 1

m
vevec (I)T. After some calculus, we can

show thatΨΞΨH = KCRBve
for both V̂ or V̂KP as Step 1,

which concludes the proof. With the optional Step 3, the
above results are valid at each iteration, which leads to
the desired outcome on the performances of V̂R-KPr. �

VII. Simulations

In this section, we illustrate the results of the previous
theoretical analysis for a KP structured scatter matrix,
whose Kronecker factors are Hermitian Toeplitz. Specif-
ically, we set its first row according to {Ae}1,ℓ = ρ|ℓ−1|, ℓ =
1, . . . ,n with ρ = 0.8 + 0.3i and {Be}1,ℓ = ρ|ℓ−1|

1
, ℓ = 1, . . . , p

with ρ1 = 0.5 + 0.3i. The minimal parameterization for
the Toeplitz structure consists in stacking the real and
imaginary parts of the first row of the matrix.

A. Matched scenario study with CES distributions

We generate 5000 sets of K i.i.d. t-distributed samples
yk ∼ Ctm,d (0,Re) , k = 1, . . . ,K with d = 3 degrees of
freedom and n = p = 3. We consider the matched
scenario, i.e., assumed model is the correct one with
gmod(·) = g(·). We compare the performance of the pro-

posed estimators R̂(R)-KPr with the related CRB. For R̂R-KPr

(i.e., with optional Step 3), the implementation uses as
stopping criterion a combination of Nit = 10 iterations at
most and a threshold of εtol = 10−4 for the relative gap
between the estimates of two successive iterations. We
also display the intermediate estimate R̂int in Step 2, as

well as the estimate, obtained with Q̂ = R−T
e ⊗ R−1

e for a
theoretical purpose.

In Fig. 1, the asymptotic covariance of the proposed
structured estimate reaches the CRB, i.e., the asymptotic
efficiency of the algorithm is empirically verifying The-
orem 3. The unbiasedness, as well as the consistency,
can also be indirectly observed in Fig. 1. Furthermore,
for a very low number of samples (around the limit of
existence, i.e., K ≈ m + 1), the use of the additional Step
3 sometimes seems to underperform the case without
Step 3. The latter is probably due to the missing p.s.d.
constraint on the estimate. Aside from this small effect,
we notice an improvement brought by Step 3 in Fig. 1.

We can also note that doing recursions to refine Q̂

behaves almost the same as using Q̂ = R−T
e ⊗R−1

e , where
Re refers to the true scatter matrix. Finally, we see the
importance of the weighting matrix Q for achieving
statistical efficiency. Indeed, the intermediate estimate
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R̂int obtained with Q = Im2 is only consistent but not
asymptotically efficient.
To illustrate the interest of our method in high dimension
context, we consider the same simulation as before but
with n = 11 and p = 9, leading to a scatter matrix of
size around 100 × 100. In Fig. 2, we can see the same
behavior as previously, i.e., the asymptotic efficiency of
the method. Furthermore, the asymptotic covariance of

R̂Kpr is almost equal to the CRB at only 140 samples.
This comes from the KP structure, which strongly re-
duces the effective dimensions of the estimation problem
compared to the apparent dimensions. Thus, for K > m
samples (limit of existence), the asymptotic regime can
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Fig. 3: Efficiency simulation for scatter estimate in mis-
matched scenarios (n = p = 3)

be rapidly achieved.

B. Mismatched study with CES distributions

In this part, we consider model misspecifications. We
generate samples as in the first simulation. Two scenarios
have been considered for the simulations.

(S1) the assumed p.d.f. is a t-distribution but with a
different degree of freedom, dmod = 20.

(S2) the assumed model is a Gaussian distribution, which
would be the most common hypothesis.

For the second scenario, we also display the performance
of the estimator given by [7], since the latter addresses
the Gaussian case. To draw the comparison, we define
the Pseudo Mean Square Error (PMSE) w.r.t Rc by

PMSE
(
R̂KPr

)
= E

[
vec

(
R̂KPr − Rc

)
vec

(
R̂KPr − Rc

)H
]
.

In Fig. 3, we can notice the asymptotic m-efficiency of
the different estimators, since the asymptotic covariance
of the proposed estimate under mismatched models
reaches the corresponding CRB. In addition, the esti-
mator of [7] is outperformed by our method, since the

intermediate estimate R̂int possesses the full structure
(KP structure + Toeplitz factors) and not only the KP
one as in [7].

C. Numerical results for CAE distribution

We generate 5000 sets of K i.i.d. CAE distributed
observations zk ∼ CAEm (Ve), k = 1, . . . ,K, where
Ve = mRe/Tr (Re).
We compare the performance of proposed estimators for

both V̂ or V̂KP as Step 1 with the corresponding CRB
and the constrained Tyler’s estimate proposed in [24]
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Fig. 4: Efficiency simulation for shape estimate

and in order to obtain a KP structured estimate, where
the Kronecker factors are also Toeplitz structured, we
intertwine Algorithm 3 into Algorithm 7 of [24]. Note
that the Hermitian Toeplitz constraint on the factors is
taken into account through a circulant embedding. The
size of this circulant matrix is a tunable parameter, with
the constraint LA ≥ 2n − 1 , Lmin

A
for the factor A

(respectively LB ≥ 2p − 1 , Lmin
B

for B).

In Fig. 4, the asymptotic covariance matrix of all
proposed estimates reaches the corresponding CRB. The
unbiasedness, as well as the consistency, can also be
indirectly observed in Fig. 4. The benefit of using a KP

structured Step 1 with V̂KP is significant, notably at low
sample support. This was to be expected, since Step 1

estimate, V̂KP, is already KP structured. In addition, we
can note that constrained Tyler’s estimate almost equally
performs with respect to the proposed estimate, which

uses V̂KP. For sufficiently large LA and LB, the latter also
seems to achieve the CRB, while no theoretical guarantee
can be easily drawn from this algorithmic approach. For
low LA and LB, this estimator seems to be asymptotically
biased.

Table I summarizes the average calculation time of
the different algorithms. It results that the proposed
algorithms are an interesting and time-efficient alterna-
tive to Constrained Tyler’s estimates, while guaranteeing
asymptotic performances.

D. MIMO channel covariance estimation

We consider the problem of MIMO channel covariance
estimation from training data. In this case, the channel
covariance matrix exhibits the KP structure [3], [46]

Rch = Ae ⊗ Be (31)

where Ae ∈ C5×5 (respectively Be ∈ C8×8) refers to the
transmit (receive) covariance matrix. In addition, we
assume that the transmit and receive arrays are linear
and uniform, such that A and B are Toeplitz structured
[47]. We consider a setup similar as the one in [47], where
matrices A and B are given by:



[Ae]kl = 0.9|k−l| exp

(
jπ

4
(k − l)

)

[Be]kl = 0.7|k−l| exp

(
jπ

3
(k − l)

) (32)

We set ntrain = 6 training symbols per frame, which are
assumed to be transmitted at one antenna at a time, the
other ones being quiet. The K samples are drawn for
a CAE distribution with a shape matrix given by Rch.
This could also be interpreted as preprocessing (normal-
ization) of CES distributed data. For the comparison, we
consider the unstructured estimators, such as the SCM
and Tyler’s estimate [28]; the KP-structured Tyler-based

estimate V̂KP [8] and the full structured estimators such
as the SCM-based one [7], Constrained Tyler [24] and

finally our estimator V̂Kpr. In this filtering problem, we
use the SNR-loss [48] to evaluate the performance of the
different methods. We recall that the latter is defined by:

ρ , ρ
(
R̂
)
=

∣∣∣∣tHR̂
−1

t
∣∣∣∣
2

(
tHR−1

e t
) (

tHR̂
−1

ReR̂
−1

t
) (33)

in which the steering vector t is chosen such that t =[
1 . . . 1

]T
∈ Rm.
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Fig. 5: SNR loss vs number of samples

On Fig. 5, we can see that the unstructured esti-
mates are strongly outperformed by the ones, which
take the structure into account. Taking the full struc-
ture into account provides better results compared with
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K
Algo w/o Step 3 Algo. w/ Step 3 Algo w/o Step 3 Constr. Tyl Constr. Tyl

(Step 1: [28]) (Step 1: [28]) (Step 1: [8]) Lmin + 5 Lmin + 50

50 0.0097s 0.040s 0.062s 0.0462s 0.17s

100 0.012s 0.029s 0.096s 0.061s 0.23s

500 0.014s 0.030s 0.33s 0.21s 0.67s

1000 0.016s 0.024s 0.58s 0.40s 0.89s

TABLE I: Average calculation time
(Matlab R2016b, CPU i5-6440HQ@2.60GHz, 16GB RAM)

KP structure only, even with a Gaussian-based model.
Finally, our method yields the same performance as
Constrained Tyler, while being an interesting trade-off
between asymptotic performances and computational
cost.

VIII. Conclusion

In this paper, we addressed robust estimation of KP
structured scatter and shape matrices, with potential
linearly structured Kronecker factors. Firstly, we have
derived a two-step estimation procedure, yielding a
structured estimate of scatter matrices. Besides, with a
slight modification of the algorithm (iterations of the
last step), we have noticed a faster convergence towards
the asymptotic regime. Secondly, we have conducted a
theoretical asymptotic analysis of the proposed method
in terms of consistency and asymptotic Gaussianity.
Thirdly, we have analyzed the statistical efficiency of the
method for CES distributions depending on the choice
made in the first step of the algorithm. This analysis also
covers possible model misspecifications. Fourthly, we
have studied the counterpart for shape matrices, where
we have shown that the method is consistent, asymp-
totically Gaussian distributed, and efficient. Finally, nu-
merical results corroborated the theoretical analysis and
assessed the interest of the proposed algorithms.

Appendix A
Simplification of the Pseudo-inverse

This appendix introduces a lemma, which is required
for the proof of Theorem 2.

Lemma 1. Let α1 and α2 be two scalars such that α1 >
0 and α2 > −α1/(np). For any admissible θ1 such that
R1 = R (θ1) = A1 ⊗ B1, let us introduce the matrices
Γ1 =

[
θB1

⊗ InA
InB

⊗ θA1

]
and WR1

= RT
1 ⊗ R1. We have

the following equality

PΓ1

(
ΓH

1 PH
[
α1W−1

R1
+ α2vec

(
R−1

1

)
vec

(
R−1

1

)H
]

PΓ1

)†
ΓH

1 PH=

PR

(
1

pα1

(
b1bH

1

)
⊗ PAF−1

A PH
A +

1

nα1
PBF−1

B PH
B ⊗

(
a1aH

1

)

−
(

α1 + 2npα2

npα1
(
α1 + npα2

)
) (

b1bH
1

)
⊗

(
a1aH

1

))
PR

H

where a1 = vec (A1) and b1 = vec (B1).

Proof. FromPR
HW−1

R1
PR =W−1

B1
⊗W−1

A1
with WA1

= AT
1⊗A1

and WB1
= BT

1 ⊗ B1, we can obtain

ΓH
1 PH

[
α1W−1

R1
+ α2vec

(
R−1

1

)
vec

(
R−1

1

)H
]

PΓ1 = G + γBγ
H
A

where

G =

[
pα1FA + p2α2FAθA1

θH
A1

FH
A λFAθA1

θH
B1

FH
B

0 nα1FB + n2α2FBθB1
θH

B1
FH

B

]

,

[
G11 G12

0 G22

]
,

γB =

(
0√

λFBθB1

)
, γA =

(√
λFAθA1

0

)
and λ =

(
α1 + npα2

)
.

The matrix G is invertible, such that

G−1 =

[
G−1

11 −G−1
11 G12G−1

22

0 G−1
22

]

in which G−1
11 and G−1

22 are given by the Sherman-
Morrison formula

G−1
11 =

1

p

(
α1FA + pα2FAθA1

θH
A1

FH
A

)−1
=

1

pα1
F−1

A − α2

λα1
θA1
θH

A1

G−1
22 =

1

n

(
α1FB + nα2FBθB1

θH
B1

FH
B

)−1
=

1

nα1
F−1

B − α2

λα1
θB1
θH

B1

Indeed, since α2 , −α1/(np), the matrices G11 and G22 are
full-rank. Furthermore, we verify that 1 + γH

A
G−1γB = 0,

we can then apply [49, Theorem 6], which yields
(
G + γB1

γH
A1

)†
= G−1 − kk†G−1 −G−1h†h + κkh (34)

with k =
1

n
√
λ

[
−θA1

θB1

]
, h =

1

p
√
λ

[
θA1

−θB1

]T

, κ = k†G−1h†

and where in the vector case x† =
xH

‖x‖2
[49].

The intended result is obtained after simplification of

PΓ1

(
G + γB1

γH
A1

)†
ΓH

1 PH with (34). �

Appendix B
Simplification for the CCRB of CES distributions

This appendix introduces a lemma, which is required
for the proof of propositions 1 and 3.

Lemma 2. Let α1 and α2 be two scalars such that α1 >
0 and α2 > −α1/(np). For any admissible θ1 satisfying the



13

constraint (C) and such that R1 = R (θ1) = A1 ⊗ B1, let us
introduce Γ1 =

[
θB1

⊗ InA
InB

⊗ θA1

]
and the matrix

C = α1W−1
R1
+ α2vec

(
R−1

1

)
vec

(
R−1

1

)H

We have the following equality

U
(
UTΓH

1 PHCPΓ1U
)−1

UT =

[
L11 L12

LH
12 L22

]
where



L11 =
1

pα1

(
F−1

A1
+ κθA1

θT
A1
− F−1

A1
uAθ

T
A1
− θA1

uT
A

F−1
A1

)

L12 = −
κ

pα1

(
θA1
θT

B1
− 1

κ
F−1

A1
uAθ

T
B1

)

L22 =
1

nα1
F−1

B1
+

(
−α2

α1λ
+

nκ − 1

npα1

)
θB1
θT

B1

with uA =
∂c (θ)

∂θA
=

1

n
PAvec

(
InA

)
, κ = uT

A
F−1

A1
uA and U given

in (22).

Proof. Starting from the block decomposition of the ma-
trix ΓH

1 PHCPΓ1 exhibited in the proof of Lemma 1, we
obtain the following non singular matrix

J =

[
J11 J12

J21 J22

]
= UTΓH

1 PHCPΓ1U,

whose the inverse can be computed by the Schur com-
plement

J−1 =

[
S
−1
J −S−1

J J12J−1
22

−J−1
22 J21S

−1
J J−1

22 + J−1
22 J21S

−1
J J12J−1

22

]

with


J−1
22 = G−1

22 =
1

nα1
F−1

B1
− α2

λα1
θB1
θH

B1

SJ , J11 − J12J−1
22 J21 = pα1UT

A

(
FA1

− 1

n
FA1
θAθ

T
AFH

A1

)
UA

By noting ZA = UT
AFA1

UA and using the Sherman-
Morrison formula, we obtain

S
−1
J =

1

pα1

(
Z−1

A + κZ−1
A UT

AFA1
θAθ

T
AFH

A1
UAZ−1

A

)

Finally, the proof is concluded by exploiting the follow-
ing relation [35, Corollary 1]

UA

(
UT

AFA1
UA

)−1
UT

A = F−1
A1
− 1

κ
F−1

A1
uAuT

AF−1
A1
.

�

Appendix C
Simplification for the CCRB of CAE distribution

This appendix introduces a lemma, which is required
for the proof of Theorem 4.

Lemma 3. For any admissible θ1 satisfying the constraint
(C1) and such that R1 = R (θ1) = A1 ⊗ B1, let us introduce
Γ1 =

[
θB1

⊗ InA
InB

⊗ θA1

]
and the matrix

C =W−1
R1
− 1

np
vec

(
R−1

1

)
vec

(
R−1

1

)H

We have the following equality

U1

(
UT

1Γ
H
1 PHCPΓ1U1

)−1
UT

1 =

[
L11 0
0 L22

]
where



L11 =
1

p

(
F−1

A1
+ κθA1

θT
A1
− F−1

A1
uAθ

T
A1
− θA1

uT
A

F−1
A1

)

L22 =
1

n

(
F−1

B1
+ κ1θB1

θT
B1
− F−1

B1
uBθ

T
B1
− θB1

uT
B
F−1

B1

)

with uT
A
= vec (In)T PA/n, uT

B
= vec

(
Ip

)T
PB/p, κ =

uT
A

F−1
A1

uA, κ1 = uT
B
F−1

B1
uB and U1 given in (30).

Proof. Starting from the block decomposition of the ma-
trix ΓH

1 PHCPΓ1 exhibited in the proof of Lemma 1 with
λ = 0, we obtain the following non singular matrix

J =

[
J11 0
0 J22

]
= UTΓH

1 PHCPΓ1U,

whose the inverse can be computed by

J−1 =

[
J−1

11 0

0 J−1
22

]

with

J−1
11 =

1

p

(
ZA −

1

n
UT

AFA1
θA1
θT

A1
FH

A1
UA

)−1

=
1

p

(
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A UT
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)

J−1
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n
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1

p
UT
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θB1
θT

B1
FH
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)−1

=
1
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B UT
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θB1
θT

B1
FH

B1
UBZ−1

B

)

where ZA = UT
AFA1

UA and ZB = UT
BFB1

UB. Finally, the
proof is concluded by exploiting the following relations
[35, Corollary 1]
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