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Majorization-Minimization on the Stiefel Manifold
with Application to Robust Sparse PCA
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Abstract—This paper proposes a framework for optimizing
cost functions of orthonormal basis learning problems, such
as principal component analysis (PCA), subspace recovery, or-
thogonal dictionary learning, etc. The optimization algorithm
is derived using the majorization-minimization framework in
conjunction with orthogonal projection reformulations to deal
with the orthonormality constraint in a systematic manner. In
this scope, we derive surrogate functions for various standard
objectives that can then be used as building blocks, with examples
for robust learning costs and sparsity enforcing penalties. To
illustrate this point, we propose a new set of algorithms for
sparse PCA driven by this methodology, whose objective function
is composed of an M -estimation type subspace fitting term plus a
regularizer that promotes sparsity. Simulations and experiments
on real data illustrate the interest of the proposed approach, both
in terms of performance and computational complexity.

Index Terms—Majorization-Minimization, Stiefel manifold,
Grassmann manifold, Subspace learning, PCA, sparse PCA.

I. INTRODUCTION

OPTIMIZATION problems on the Stiefel manifold, i.e.,
involving the orthonormality constraint on the matrix

variable, are ubiquitous in signal processing and machine
learning. To name a few, such problems arise in principal
component analysis (PCA) [1, 2], sparse PCA [3–8], structured
covariance matrix estimation [9, 10], robust subspace recovery
[11–16], and subspace clustering [17]. To tackle the challenges
from big data and high-dimensional settings the solutions are
often desired with certain additional properties, e.g., sparsity.
These additional properties are often enforced by including
regularization penalties to the objective function. Except for
some special cases where the solution appears as eigenvectors
of a given matrix, these problems are usually nontrivial to
deal with, owing to the nonconvex orthonormality constraints.
The resolution of these problems thus generally calls for the
use of iterative constrained optimization methods to search
for their local minima. A very general framework to account
for the orthonormality constraint is brought by Riemannian
optimization algorithms on the Stiefel manifold [18–23]. How-
ever, the algorithms derived within this perspective can turn to
be computationally costly. Additionally, ensuring sparsity and
orthonormality simultaneously is a challenging goal, which
generally calls for a trade-off between these two properties in
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the solutions obtained by existing state-of-the-art approaches
(cf. [6] and reference therein). A recent line of work based
on orthogonal Procrustes reformulations, however, has enabled
researchers to ensure both of these properties. These works ad-
dressed specific applications, e.g., [7] for the sparse PCA and
covariance estimation and [8] for low-rank matrix estimation
problems.

Motivated by the applicability of these reformulations for
tackling the aforementioned issues, this work aims to develop
a general low-complexity algorithmic framework for large-
scale sparsity-regularized optimization problems on the Stiefel
Manifold. This framework will be based on the majorization-
minimization (MM) algorithm [24], which proceeds with
two steps: i) (majorization) finding a function that locally
upperbounds the objective function up to a constant, referred
to as surrogate function; ii) (minimization) minimizing this
surrogate function. This procedure generates a sequence that
monotonically decreases the objective value, and its main
interest is that, with properly chosen surrogate functions, it can
yield a sequence of subproblems that are easy to deal with.
The main idea will thus be to deal with the orthonormality
constraint through a systematic formulation of the surrogates
minimization subproblems as a Euclidean projection onto the
Stiefel manifold [23, 25, 26], as done for specific cases in,
e.g., [7, 27–29]. Thereby, we propose a unified approach with
convergence guarantee and a set of practical guidelines for
applying this methodology that generalizes to a large class of
cost functions. Notably, an emphasis is put on robust data
fitting cost functions and sparsity enforcing penalties. The
advantages of the proposed methodology are multiple: i) it
can be applied to a large class of standard cost functions; ii)
it guarantees that the iterates are orthonormal and has standard
MM convergence guarantees, i.e., monotonic decrement of the
objective value, and convergence to the set of critical points
of the problem [30]; iii) it yields scalable algorithms, as the
computational bottleneck of each iteration lies only in the
computation of a thin-SVD.

As a main example to illustrate this framework, we propose
a new class of algorithms for sparse PCA, referred to as
RSPCA (for robust sparse PCA). The familly of objective
functions proposed for this task combines a M -estimation-type
subspace fitting function [12–15], plus a sparsity promoting
penalty. The considered penalties leverage the proxies of the
`0-norm proposed in [31], and allow for the optimization to be
conducted with the proposed methodology. Interestingly, the
resulting sparse PCA algorithms do not involve a relaxation
of the orthonormality constraint, which is usually required in
the existing state-of-the-art methods [3–6]. Finally, simulation
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results illustrate the usefulness of the proposed approaches,
both in terms of performance and computational complexity.

The presentation is organized as follows. Section II presents
relevant background and the motivations for this study. Section
III presents a generic MM framework for optimization over
the Stiefel manifold, where a systematic linear majorization is
applied in order to derive simple iterations. Such majorization
can be obtained for various standard cost functions, for which
a catalog is presented in Section IV. Section V presents several
examples of algorithms derived following this framework, and
exhibits some links between them and existing state-of-the-art
algorithms. Section VI illustrates the application of this frame-
work to sparse-PCA for a flexible class of sparsity promoting
penalties. This adds to the list of functions covered by Section
IV while discussing methodological insights for applying the
framework to non-standard costs functions. Finally, Section
VII presents some simulations and experiments on real data to
illustrate the interest of the proposed approach and algorithms,
both in terms of performance and computational complexity.

The following notation is adopted: italic, lower case bold-
face, and upper case boldface indicate respectively, scalar,
vector, and matrix quantities. The upperscript H denotes the
transpose conjugate operator. I is the identity matrix of the
appropriate dimension. Tr{} is the Trace operator. {wi}ni=1

denotes the set of elements wi, ∀i ∈ [[1, N ]]. diag({ai}ni=1) is
the n × n diagonal matrix with diagonal entries an. For tall
matrices M ∈ Cp×k (p > k) the thin-SVD (TSVD) is denoted
M

TSVD
= UkDkV

H , where only the k first column vectors of
U from the SVD are used. The set of p×p Hermitian positive
semi-definite matrices is denotedH+

p . The set of p×p diagonal
matrices is denoted Dp.

II. BACKGROUND AND POSITIONING

A. Majorization-Minimization (MM) algorithms

The MM framework is briefly reviewed below. For more
complete information, we refer the reader to [24]. Consider
the following optimization problem:

minimize
x∈X

f(x), (1)

where f : X → R is a continuous function and X is a
closed set. Given an initial point x0 ∈ X , the MM procedure
minimizes f over X by updating x iteratively as

xt+1 ∈ argmin
x∈X

g(x|xt), (2)

where g(·|xt) : X → R is a surrogate function of f satisfying
the following property:

xt ∈ argmin
x∈X

g(x|xt)− f(x). (3)

In other words, g(·|xt) upperbounds f globally over set X up
to a constant:

g(x|xt)− f(x) ≥ ct , {g(xt|xt)− f(xt)}, ∀x ∈ X . (4)

The sequence {f(xt)}t∈N generated by (2) is non-increasing
since

f(xt+1)
(4)
≤ g(xt+1|xt)− ct

(2)
≤ g(xt|xt)− ct = f(xt). (5)

The MM procedure suggests thus the possibility of minimizing
f by iteratively seeking for a sequence of surrogate functions
{g(·|Ut)}t∈N that are easy to minimize over the feasible set.

B. Stiefel manifold and orthogonal projection problem

First, define the complex Stiefel manifold as:

St(p, k) =
{
U ∈ Cp×k | UHU = I

}
for k ≤ p. (6)

A point U ∈ St(p, k) is a semi-unitary1 matrix, referred to as
k-orthogonal frame. This point U is also an orthonormal basis
that spans a k-dimensional subspace. However, notice that this
representation of a subspace is not unique as UQ spans the
same subspace for any Q ∈ St(k, k).

Let X ∈ Cp×k be a rank p matrix, the Euclidean projection
of X onto the Stiefel manifold is the solution of the following
problem

minimize
U∈St(p,k)

||X−U||2F . (7)

When X is full rank the problem (7) has a unique global
minimizer, given by [23, Prop. 7], as

U? = PSt {X} , (8)

where the operator PSt is defined in Algorithm 1.

C. Optimization on St(p, k): some existing solutions

Consider a generic optimization problem where the variable
is constrained to the Stiefel manifold:

minimize
U∈St(p,k)

f (U) , (9)

where f : Cp×k → R is a differentiable objective function
suited to an application of interest. Notice that optimization
problems over the Stiefel manifold St(p, k) are nonconvex due
to the orthonormality constraint. Hence, they are usually hard
to deal with, even for apparently simple objective functions f .

A natural way to handle the orthonormality constraint is to
turn to the framework of Riemannian optimization. A review
of this general topic can be found in [18], where St(p, k) is
used as example throughout the book. More focused reviews
of manifold-oriented counterparts of classical optimization
algorithms on St(p, k) (steepest descent, conjugate gradient,
Newton’s method, etc.) can be found in [20, 23] ([21, 22] for
St(p, p)). Notice that when the function is rotation invariant,
i.e., f(U) = f(UQ), ∀Q ∈ St(k, k), it can be minimized on
the Grassmann manifold Gr(p, k) (the set of p-dimensional
subspaces of Cp), with corresponding Riemannian optimiza-
tion algorithm [18, 20, 23], which has the advantage of
reducing the dimension of the problem by exploiting its invari-
ance. In this case, one can still apply optimization algorithms
developed for St(p, k), but the variable U ∈ St(p, k) simply
acts as a representation of its equivalence class (a point in
Gr(p, k)).

A second—more specific—option, can be to split f as f =
fu + fv and rewrite (9) as

minimize
V,U∈St(p,k)

fu (U) + fv (V)

subject to U = V,
(10)

1Or semi-orthogonal in the real valued case.
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then relax the equality constraint of this problem using the
augmented Lagrangian method. The aim of this reformulation,
e.g., used in [8], is mainly to derive a block-coordinate
algorithm where the updates with respect to U and V are
separately easy to obtain.

D. Aim of this paper

In this paper, we explore the use of the MM framework
to solve problems on St(p, k) formulated as in (9). Generally
speaking, a majorization can be applied to cast subproblems
that are more practical for the aforementioned algorithms to be
applied. For example, the subproblems could have easy New-
ton steps, or a simpler update of the block U in problem (10).
Here, our main focus will be to derive surrogates functions
that formulate minimization subproblems with closed-form
solutions. Interestingly this systematic approach yields low-
complexity algorithms for solving problem as in (9), which
can also be used as subroutine for more complex problems
where the formulation (10) is involved.

III. MM ALGORITHMS ON THE STIEFEL MANIFOLD WITH
SYSTEMATIC PROJECTION REFORMULATIONS

A. Generic algorithm formulation

To tackle the optimization of the cost function in (9) under
the orthonormality constraint, we consider applying the MM
[24] framework and minimizing f by solving a sequence of
Euclidean projections on St(p, k). In short, we will construct
surrogate functions that are linear when restricted to the
feasible set St(p, k). The corresponding subproblem can then
be recast as a Euclidean projection onto St(p, k) (cf. section
II-B), which has a unique solution that can be obtained via
thin-SVD. In the following, we assume that the objective in (9)
is majorized at point Ut by a surrogate g(U|Ut) that satisfies
the following properties (examples are given later).

Assumption 1. The surrogate function g : Cp×k×Cp×k → R
satisfies the following conditions:
i) Tightness: g(Ut|Ut) = f(Ut),

ii) Continuity: g(· | ·) is continuous on Cp×k × Cp×k,

iii) Upperbound: g(U|Ut) ≥ f(U), ∀U ∈ St(p, k),

iv) Linearity: restricting to St(p, k), g can be expressed as

g
(
U|Ut

)
= − Tr

{
RH

(
Ut
)
U
}

− Tr
{
UHR

(
Ut
)}

+ const.,

= − 2Re
{

Tr{UHR
(
Ut
)
}
}

+ const.,
(11)

where R : Cp×k → Cp×k is a matrix function of Ut.

Following the MM procedure described in Section II-A, an
update of the parameter U is given by

Ut+1 ∈ argmin
U∈St(p,k)

g
(
U|Ut

)
. (12)

Since g is linear (cf. (18)) and U ∈ St(p, k), it is not hard to
see that obtaining this update is equivalent to solving

minimize
U∈St(p,k)

||R
(
Ut
)
−U||2F , (13)

Algorithm 1 Computation of PSt (projection on St(p, k))

1: Entry: R ∈ Cp×k

2: Compute the thin-SVD: R
TSVD

= VleftDVH
right

3: Set U=VleftV
H
right

4: Output: U = PSt(R) ∈ St(p, k)

Algorithm 2 Generic MM Algorithm for St(p, k)

1: initialize t = 0, U(0) ∈ CN×R
2: repeat
3: Compute R (Ut) from surrogate (18)
4: Update Ut+1 = PSt {R (Ut)} with Algorithm 1
5: t = t+ 1
6: until convergence criterion is met

which is the projection problem discussed in Section II-B.
When R (Ut) is full rank2, the problem (13) admits a unique
solution, leading to the MM update:

Ut+1 = PSt

{
R
(
Ut
)}
, (14)

where the operator PSt is defined in Algorithm 1. Eventually,
solving the sequence of projection problems results in an MM
procedure to optimize f under the orthonormality constraint,
which is summarized in Algorithm 2.
Remark 1. Importantly, the MM approach is also applicable
to objective function consisting sum of functions of the form

f(U) =

I∑
i=1

fi(U). (15)

Then, if each fi can be majorized by a linear surrogate gi of
the form

gi
(
U|Ut

)
= − Tr

{
RH
i

(
Ut
)
U
}

− Tr
{
UHRi

(
Ut
)}

+ const.,
(16)

following the same steps as (12)-(14), the MM updates can
simply be obtained as

Ut+1 = PSt

{
I∑
i=1

Ri

(
Ut
)}

. (17)

Obviously, this methodology cannot be applied to any
arbitrary cost function. Still, Section IV presents a catalog of
surrogate functions satisfying (18) for a large set of standard
cost functions that can be used as building blocks (with several
examples detailed in Section V). The method also suggests that
simple algorithms can be obtained by designing meaningful
proxies of the desired function that can be majorized by
a linear surrogate on St(p, k). As a concrete example, we
propose sparsity promoting penalties that satisfy this property
in Section VI, leading to an original algorithm for sparse PCA.

2Rank deficiency of this matrix is a case we do not focus on: some
pathological counter-examples can be build but they rely on either i) a
cost function f that does not satisfy the initial regularity assumptions; ii)
a subspace within Ut that has reached a local stationary point. For the
second point, the proposed method can still be applied by setting the stable
subspace fixed and updating only the remaining portion of Ut (i.e., recasting
the problem with k′ < k). In practice, the issue has not been experienced
with the cost functions (and starting points) considered in this paper.
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Remark 2. Quadratic surrogate functions, if existing, can also
be used within the considered framework. These surrogates
should satisfy Assumption 1 with the following alternate
condition:

iv′) Restricting to St(p, k), g can be expressed as

g
(
U|Ut

)
= − Tr

{
UHM

(
Ut
)
UD

(
Ut
)}

+ const.,
(18)

where M : Cp×k → H+
p and D : Cp×k → Dk are matrix

functions of Ut.

Indeed, such surrogates also yield tractable minimization
subproblems under the orthonormality constraint: the corre-
sponding updates are then obtained from the k eigenvectors
associated to the largest eigenvalues of M (Ut) if D (Ut) < 0
(smallest conversely). In this paper, we focused on linear surro-
gates since quadratic functions always admit linear surrogates
on St(p, k) (cf. propositions 2 and 3). Thus, functions with
quadratic majorizers can also be used in conjunction with
function that only have linear ones within the proposed frame-
work, while the converse is not true. Nevertheless, quadratic
surrogates can in some cases provide tighter approximations
that yield a faster convergence of the MM algorithm (at the
cost of handling larger matrices at each iterations). A main
example discussing the two options is detailed in section V-C
and VII-A.

B. Convergence analysis

The convergence analysis of Algorithm 2 will be obtained
by following the one of the successive upper-bound minimiza-
tion (SUM) algorithm in [30]. Note that the result of [30] does
not hold directly for Algorithm 2, as the SUM framework does
not cover non-convex constraints. Nevertheless, this result can
be adapted to St(p, k) as in [7, 32, 33], leading to the following
proposition.

Proposition 1. Let {Ut}∞t=0 be a sequence generated by
Algorithm 2. Then the following hold:

1) The sequence {f(Ut)}t∈N converges.
2) Every limit point U∗ of the sequence is a critical (also

referred to as Karush-Kuhn-Tucker, or KKT) point of the
problem (9).

3) The whole sequence converges to K, the set of KKT
points of the problem (9).

Proof. First, remark that Algorithm 2 follows the MM proce-
dure, by (5) we have that the sequence {f(Ut)}t∈N is non-
increasing, and thus converges. The compactness of the set
St(p, k) then implies that the sequence {Ut}t∈N is bounded.
Thus it admits at least one limit point U∗. Following the same
argument as [30, Theorem 1] we have

g (U∗|U∗) ≤ g (U|U∗) , ∀U ∈ St(p, k), (19)

meaning that U∗ is a global minimizer of the problem

minimize
U∈St(p,k)

g (U|U∗) . (20)

Since the linear independence constraint qualification (LICQ)
holds at U∗ [7, Lemma 3], it satisfies the following conditions:{

∇g (U∗|U∗) = U∗Λ

(U∗)HU∗ = I,
(21)

where Λ is the associated Lagrange multiplier (see Ap-
pendix of [34] for more details). The continuity of f and
g together with the upperbound condition of g implies that
∇g (U∗|U∗) = ∇f(U∗), which, combined with (21), implies
that U∗ satisfies the KKT conditions of problem (9). Now,
assume that the whole sequence {Ut}∞t=0 does not converge
to K. Then there exists a convergent subsequence, indexed
by {tj}, such that limj→∞d

(tj)(K) ≥ c for c ∈ R∗+, and
where d(tj)(K) = minY∈St(p,k)||Utj −Y||. The subsequence
{Utj}∞j=0 is bounded, and the compactness of the set St(p, k)
again implies that it admits at least one limit point. As shown
previously, this limit point is a KKT point of problem (9),
which is a contradiction. Thus, the whole sequence {Ut}∞t=0

converges to K.

Remark 3. Note that the convergence to K does not imply
the convergence of Algorithm 2 in terms of the variable U.
Establishing this property requires a case-by-case analysis
which goes beyond the scope of this paper. In some cases
the monotonic decrement of the objective can directly imply
the convergence in terms of variable [35]. For the case of
rotation invariant costs, this convergence in variable requires
to be expressed in terms of subspace, e.g., as in [15].

C. Computational cost

First, recall that p denotes the dimension of the data, k refers
to the dimension of the subspace of interest, and t indexes the
algorithm steps. The sample size (number of columns of the
data matrix) will be denoted n. The computational cost will
be studied per iteration, therefore, it is to be multiplied by the
total number of iterations T to obtain the overall complexity.
A single iteration in Algortithm 2 essentially involves two
operations:
• The computation of the matrix R(U): this step usually

involves functions of the p × n data matrix and/or mul-
tiplying this matrix with the current point Ut. Thus, this
step is generally O(npk) (cf. examples in Section V).
Also notice that this computation can, most of the time,
be parallelized. Hence it does not represent the major
bottleneck of Algorithm 2, contrarily to the second step.

• The computation of PSt: this step requires to compute
the thin-SVD of a tall matrix R ∈ Cp×k which is
O(pk2 + k3). Also notice that this projection can be
obtained through

PSt(R) = R(RHR)−1/2, (22)

which does not improve the theoretical complexity but
can be advantageous to implement in some practical
cases.

Comparing to the existing approaches, e.g., the steepest
descent on the Stiefel manifold [18], an iteration requires com-
puting the gradient (also generally O(npk)) and a retraction
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(local mapping between a point in St(p, k) and its tangent
space). The choice of the retraction is not unique, which
leads to several options, e.g., based on geodesic paths [20],
Euclidean projection [23], or QR decomposition [18]. Never-
theless, for all of the corresponding algorithms, the retraction
step is O(pk2 + k3). Hence, the computational complexity of
an iteration of Algortithm 2 is on par with standard first-order
based methods. However, this MM procedure is step-size free,
thus it does not require the knowledge of any global parameter
(such as the Lipschitz constant), or its adaptive estimation
using a line search-type method. Compared to the latter option,
this property effectively reduces the computational burden of
each iteration, as it does not involve multiple computations of
the retraction step (the computational bottleneck).

Establishing the total complexity of Algorithm 2 implies
to study its convergence rate, which would require additional
assumptions on the objective function and goes beyond the
scope of this paper (pointers for some special cases are
discussed in Section V-D). The convergence speed of an MM
algorithm is generally expected to be sub-linear. Nevertheless,
this possibly slow convergence can be compensated by the
low-complexity of each iteration, resulting in a faster algo-
rithm when considering the total computation time. More
details on these remarks are illustrated with experiments in
Section VII.

D. Extensions to block-MM

In addition to U ∈ St(p, k) some problems may involve
a set of side parameters θ ∈ Cp′ (cf., e.g., [7–9]), and be
formulated as

minimize
U,A

f (U,A)

subject to (U,A) ∈ St(p, k)×Θ,
(23)

where Θ is a compact of Cp′ . Such problems can be tackled
by partitioning the variables and applying the block-MM
algorithm [24], i.e., performing cyclic updates of the blocks,
while keeping the others fixed. In our context, U typically
represents a block updated by using one or several iterations
of Algorithm 2. In this case, the convergence of the block-MM
algorithm can be established from the analysis of the BSUM
algorithm [30, 36] in conjunction with Proposition 1.

IV. STANDARD COST FUNCTIONS AND THEIR SURROGATES

The key to apply Algorithm 2 is to obtain a linear surrogate
of the objective on the set St(p, k). In this section, we derive
such surrogates functions for several standard minimization
problems. Furthermore, maximization problems can also be
tackled by considering the negative of the objective function
(or equivalently, Minorization-Maximization).

A. Quadratic forms

First, define the Brockett function [18, Sec. 4.8] for U =
[u1| · · · |uk] ∈ St(p, k) as

fB (U) =

k∑
r=1

dru
H
r Mur = Tr

{
UHMUD

}
, (24)

with M ∈ H+
p , and D ∈ Dk a diagonal matrix with

[D]r,r = dr satisfying 0 ≤ d1 ≤ · · · ≤ dk. In the following,
functions of the form fB (resp. −fB) are referred to as convex
(resp. concave) QFs. Note that some other expressions of QFs
exist, but they can usually be rewritten as special cases or
combinations (e.g., sums) of Brockett functions.

Proposition 2. (Majorization of concave QF) The function
−fB as in (24) admits at point Ut

R a linear majorizing
surrogate in the form of (18), with

R(Ut) = MUtD. (25)

Equality holds at Ut.

Proof. The function −fB as in (24) is concave, so it can be
majorized at point Ut by its first order Taylor expansion (cf.
[24] section III.A), i.e.,

− fB (U) ≤ − Tr
{(

MUtD
)H

U
}

− Tr
{
UH

(
MUtD

)}
+ const..

(26)

Remark 4. Majorizing a convex QF of U by a linear one
seems counter-intuitive since it is not possible on the entire
Euclidean space CN×R. Nevertheless, the restriction to the set
St(p, k) will make such an upperbound possible in Proposition
3. In order to give some insight, a visual example on R2 is
also presented in Figure 1.

Proposition 3. (Majorization of convex QF) The function fB
in (24) admits on St(p, k) and at point Ut a linear majorizing
surrogate in the form of (18), with

R(Ut) = −KUtD, (27)

where K = M−λmax
M I and λmax

M is the largest eigenvalue of
M. Equality holds at Ut.

Proof. The function fB in (24) can be expressed as

Tr
{
UHMUD

}
= Tr

{
UH (M− λmax

M I) UD
}

+ Tr
{
UH (λmax

M I) UD
}
,

(28)

where the second term is constant and equal to λmax
M Tr {D}

for the restriction U ∈ St(p, k). The first term of this
expression is concave in U (U ∈ CM×R) so it can be upper-
bounded by its first order Taylor expansion, thus

fB (U) ≤ + Tr
{(

KUtD
)H

U
}

+ Tr
{
UH

(
KUtD

)}
+ const.,

(29)

with K defined as in Proposition 3.

B. Concave compositions of quadratic forms

Compositions involving inner QFs that yield concave func-
tions are often used in order to build robust loss functions
(examples are given in section V-C). The following proposition
gives a linear majorizer of concave functions composed from
the Brockett function.
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Fig. 1. Quadratic form on R2 and its restriction to St(2, 1) (up). Linear
majorization of this quadratic form at a given point over the set St(2, 1)
(down).

Proposition 4. (Majorization of concave function composed
from concave QF) Let ρ : R → R be a concave non-
decreasing function. For fB as in (24), the function ρ(−fB)
admits at point Ut a linear majorizing surrogate in the form
of (18), with

R(Ut) = ρ′
(
−fB

(
Ut
))

MUtD. (30)

Equality holds at Ut.

Proof. The function −fB is concave in U and ρ is concave
non-decreasing. It follows that the function ρ(−fB) is concave
[37], so it can be upper-bounded at point Ut by its first order
Taylor expansion, i.e.,

ρ (−fB (U)) ≤ − ρ′
(
−fB

(
Ut
))

Tr
{(

MUtD
)H

U
}

− ρ′
(
−fB

(
Ut
))

Tr
{
UH

(
MUtD

)}
+ const.

(31)

Following this proof, other linear surrogates can be de-
rived using compositions of concave (non-decreasing/non-
increasing) functions and the chain rule. It is also worth
noting that one can apply the reformulation of Proposition
3 to express a quadratic QF as a concave term plus a constant
in order to do so (the obtained majoration is then only valid
on St(p, k)).

C. Quotients of quadratic forms

Various formulations of quotients of quadratic forms arise
in generalized versions of PCA [35]. Most of them can be
obtained as linear combinations of functions of the form

fq(U) = −Tr
{(

UHCU
)−1

UHAU
}
, (32)

where C is a positive definite and A is positive semi-definite.

Proposition 5. (Majorization of quotient of QFs) The func-
tion fq as in (32) admits on St(p, k) and at point Ut a linear
majorizing surrogate in the form of (18), with

R(Ut) = T(Ut)−
(
KUtT̃(Ut)

)
, (33)

and

T(Ut) = AUt
(
(Ut)HCUt

)−1
,

T̃(Ut) =
(
A−1/2T(Ut)

)H (
A−1/2T(Ut)

)
,

K = C− λmax
C I,

(34)

where λmax
C is the largest eigenvalue of C. Equality holds at

Ut.

Proof. Starting from the inequality∥∥∥(UHCU
)−1/2

UHA1/2

−
(
UHCU

)1/2 (
(Ut)HCUt

)−1
(Ut)HA1/2

∥∥∥2 ≥ 0,
(35)

we obtain

fq(U) ≤− 2Re
{(

T(Ut)
)H

U
}

+ Tr
{

UHCUT̃(Ut)
}
,

(36)

with T(Ut) and T̃(Ut) as in (34), and where equality holds
at Ut. Following the proof of Proposition 3, we can majorize
on St(p, k) the quadratic term in (36) as

Tr
{

UHCUT̃(Ut)
}
≤ + Tr

{(
KUtT̃(Ut)

)H
U

}
+ Tr

{
UH

(
KUtT̃(Ut)

)}
+ const.,

(37)
with K as in (34), and where equality holds again at Ut.
Combining the inequalities (36) and (37) concludes the proof.

V. EXAMPLES AND LINKS WITH EXISTING ALGORITHMS

This section provides some examples of MM algorithms
that leverage the proposed method with the surrogate functions
from Section IV. When existing, some links with the existing
state-of-the-art algorithms are highlighted.
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A. Power iteration methods

Let u ∈ St(p, 1) and M ∈ H+
p . Consider the classical

problem
maximize

u
uHMu

subject to uHu = 1,
(38)

whose local solutions are the eigenvectors of M. In order
to compute those solutions, we can apply the framework
proposed in Section III. First, we simply rewrite the problem
as a minimization one by changing the sign of the objective:

minimize
u∈St(p,1)

uH(−M)u. (39)

Second, since the objective in (39) is a concave QF, we can
apply Proposition 2 in Section IV-A to obtain a majorizing
linear surrogate function at the point ut as:

g(u|ut) = −uHMut − (ut)HMu + const. (40)

Finally, we recognize a surrogate function as in (18), with
R (ut) = Mut. Therefore, we can apply Algorithm 2, which
leads to the following MM iterations:

ut+1 = PProc

{
Mut

}
. (41)

This algorithm simply corresponds to the normalization of the
iterate Mut. Thus, Algorithm 2 for this problem yields the
well-known power iteration method [38]. This algorithm also
appears as special case of a steepest-descent method on the
Stiefel manifold (cf. Section 4.6.6 [18]).

Let us now consider the general case U ∈ St(p, k), with
corresponding problem:

maximize
U

UHMU

subject to UHU = I.
(42)

The stationary points of this problem are k-dimensional invari-
ant subspaces of M. Applying the same steps as in (39)-(41),
we obtain the MM algorithm:

Ut+1 = PProc

{
MUt

}
, (43)

which is a generalization of the power method similar to
the orthogonal iterations [38] (that equivalently relies on the
QR decomposition rather than PProc to orthonormalize the
updates).

B. MM for generic non-homogeneous QF (with a linear term)

Let U = [u1| · · · |uk] ∈ St(p, k) and a set of k pos-
itive semi-definite Hermitian matrices {Mr}. Consider the
following problem (appearing for example as a subproblems
in [9, 39]):

maximize
U

k∑
r=1

[
uHr Mrur + 2Re{uHr cr}

]
subject to uHi uj = δi,j ∀ i, j ∈ [[1, k]],

(44)

which has no closed form solution related to the SVD of the
matrices Mr and the vectors cr. First, we rewrite the problem
as

minimize
U∈St(p,k)

k∑
r=1

[
uHr (−Mr)ur − 2Re{uHr cr}

]
. (45)

The objective of (45) can be split into two functions and allows
us to follow (15)-(17). First, notice that the linear elements
of the sum are already expressed as in (18) since

−2Re{uHr cr} = −uHr cr − cHr ur, ∀r ∈ [[1, k]]. (46)

Second, for each concave quadratic element of the sum, we
apply the same steps as in (39)-(41). This leads to a surrogate
function for the total objective in (45) in the form of (18) with

R
(
Ut
)

=
[
M1u

t
1 + c1| · · · |Mku

t
k + ck

]
. (47)

Therefore, we can apply Algorithm 2, which leads to the
following MM iterations:

Ut+1 = PProc

{[
M1u

t
1 + c1| · · · |Mku

t
k + ck

]}
. (48)

We also note that this algorithm corresponds to the one of
[27], which is often called for minimizing linear-plus-quadratic
terms under orthonormality constraints.

C. MM for nonconvex robust subspace recovery (RSR)

The aim of RSR is to estimate a low-dimensional subspace
from a (demeaned) dataset {zi}ni=1, while being robust to
potential outliers within this set. There are many approaches to
tackle this problem [11]. Among them, several RSR estimators
have been proposed as minimizers of a nonconvex robust
regression function [12–16], with orthonormality constraint.

Following [14], a problem for such RSR can be formulated
as follows:

minimize
U∈St(p,k)

n∑
i=1

ρ
(
d2 (U, zi)

)
, (49)

where

d2 (U, z) = ‖(UUH)⊥z‖2F = zHz− Tr
(
UHzzHU

)
(50)

is the Euclidean distance between a vector z ∈ Cp and the
subspace spanned by U ∈ St(p, k), and ρ : R → R is a
function that ensures the robustness to outliers. Here, ρ is
assumed to be a concave nondecreasing function. However,
this constraint is not restrictive, as it holds for a wide variety
of usual robust formulations, as illustrated by the following
examples:

Example 1. (`p-norm) For p > 0, `p-norm nonconvex RSR
estimators are defined as in (49) by using the function

ρp(t) = tp/2. (51)

The least-square estimator is defined for p = 2. In this case, it
is not hard to show that (49) is equivalent to (42) with M =∑n
k=1 zkz

H
k . The solution is the k the leading eigenvectors

of the sample covariance matrix, which corresponds to the
standard PCA estimator.

Example 2. (Huber-type) For a parameter T ≥ 0, Huber-type
nonconvex RSR estimators are defined as in (49) by using the
function

ρH(t) =

{
t/
√
T if t ≤ T,

2
√
t−
√
T if t > T.

(52)
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The median estimator, e.g., considered in [14, 15], corresponds
to the case limit case T → 0.

Example 3. (Cauchy–Lorentz-type) For a parameter T ≥ 1,
Cauchy–Lorentz-type nonconvex RSR estimators are defined
as in (49) by using the function

ρCL(t) = T ln(T + t). (53)

Example 4. (Geman-McClure-type) For a parameter T ≥ 0,
Geman-McClure-type nonconvex RSR estimators are defined
as in (49) by using the function

ρGMC(t) = t/(T + t), (54)

which has been used in, e.g., [12].

From the problem in (49), we exhibit some links between
algorithms from the state of the art and the proposed frame-
work. First, notice that ρ is a concave nondecreasing and d
in (50) is a concave QF of U. Therefore each element of
the sum of the objective in (49) can be majorized by using
Proposition 4 in Section IV. This leads to a surrogate function
in the form of (18) with R (Ut) = M (Ut) Ut, where

M (U) =

n∑
i=1

ρ′
(
d2 (U, zi)

)
ziz

H
i . (55)

Applying Algorithm 2 thus yields the MM iterations

Ut+1 = PProc

{
M
(
Ut
)
Ut
}
. (56)

The resulting algorithm corresponds to R1-PCA-type fixed-
point iterations, initially proposed as heuristic in [14].

Additionally, the MM perspective allows us to draw some
links with other algorithms that aim at solving (49). It is shown
in [15] that the objective of (49) is also majorized with equality
at the point Ut by a concave quadratic surrogate function as

n∑
i=1

ρ
(
d2 (U, zi)

)
≤ −Tr

{
UHM

(
Ut
)
U
}

+ const. (57)

Minimizing the surrogate function in (57) is a problem equiv-
alent to the one in (42) (with M = M (Ut)). An update
can thus be obtained by computing the k leading eigenvectors
of M (Ut). This algorithm corresponds to the fixed-point
iteration proposed in [13]. An equivalent update can be ob-
tained through the SVD of the data matrix Zt = [z1| · · · |zn]
using normalized samples zti =

√
ρ′ (d2 (Ut, zi))zi, which

corresponds to the FMS algorithm proposed in [15]. Following
the example of Section V-A, a third option to compute this
update is to perform an inner loop using an MM algorithm
(i.e., the power method in (43)). This procedure corresponds
to the algorithm referred to as FMS with power method in [15].
Alternatively, the surrogate function in (57) is a concave QF
so it can be majorized with Proposition 2: the resulting MM
algorithm is again (56). Within this perspective, we can also
note that Algorithm (2) in (56) (R1-PCA-type) also appears as
the FMS with power method when only one power iteration
is performed at each step. Some simulations comparing these
approaches are presented in Section VII.

Algorithm 3 Frank-Wolfe method
1: initialize: x0 ∈ D
2: repeat
3: Compute s = argmins∈D 〈s,∇f(xt)〉
4: Update xt+1 = (1− γ)xt + γs for γ = 2/(t+ 2)
5: t = t+ 1
6: until convergence criterion is met

D. Frank-Wolfe and first-order approximation methods

The Frank-Wolfe method [40] (cf. Algorithm 3) regained
popularity in machine learning related fields [41] for mini-
mizing a convex function f (with gradient ∇f ) over a convex
set D. This approach was also recently extended to the
Riemannian optimiation framework in [42] as an alternative
to first order projection based method (e.g., Steepest descent
[18]). In this method, a descent direction is obtained by
minimizing a first-order linear approximation of the objec-
tive, which is reminescent of the proposed approach (though
the linear approximation is not a majorizer of the concave
function). However, the problems considered in this paper
are not convex (nor g-convex) so Frank-Wolfe method is not
trivially transposable on the Stiefel manifold. Yet, similar first-
order approximation methods have been proposed for this
set. Notably, [43, Sec. 3.4] considered minimizing a concave
function with the following algorithm

Ut+1 = argmin
U∈St(p,k)

〈U,∇f(Ut)〉 (58)

which can be interpreted as a Frank-Wolfe method with a
constant (maximal) step γ = 1. This algorithm also cor-
responds to an MM approach since the first order Taylor
approximation is a linear majorizing surrogate of a concave
function. Interestingly, the proposed framework also gener-
alizes to objectives that are not necessarily concave, as it
only requires a linear surrogate of the objective on St(p, k).
Conversely, some stronger convergence results (such as the
convergence rate) for Algorithm 2 can be obtained from [43]
when the objective is concave.

VI. MAJORIZATION-MINIMIZATION FOR SPARSE PCA

In standard PCA, the estimated principal components are
usually dense (i.e., a linear combinations of all entries of
the variables). Since the principal components have an actual
physical meaning in many applications, estimating sparse
principal components can significantly help the interpretation,
as well as the variable selection process. Many algorithms have
been proposed to perform this task [3–8]. Most of the proposed
methods involve a variable U ∈ St(p, k), whose columns
represent the principal components, and can be generically
formulated through the problem

minimize
U∈St(p,k)

L(U, {zi}ni=1) + λξ (U) , (59)

where L is a data fitting term (orthogonal regression on the
dataset {zi}ni=1), ξ is a sparsity promoting penalty, and λ is
a regularization parameter. The introduction of the penalty
usually makes the minimization in (59) hard to deal with under
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the orthonormality constraint. Thus, most algorithms in the
literature relax this constraint and resort to a trade-off [3–6].
In the following, this issue is addressed by using the proxies of
`0-norm proposed in [31] to promote sparsity, while leveraging
the MM framework of Section III to perform the optimization
under the orthonormality constraint.

A. Sparse regularizers with linear surrogates on St(p, k)

One approach to force sparsity in the principal components
U = [u1| · · · |uk] is to use a penalty involving the `0-norm3:

‖U‖0 =
∑
r,i

sgn ( |[ur]i| ) , (60)

where |·| stands for the modulus of a complex number. Another
approach, that promotes a row-sparse structure, is the use of
the `2,0-norm, defined by:

‖(U)‖22,0 =

p∑
i=1

(
k∑
r=1

sgn ( |[ur]i| )

)2

. (61)

However, both of these functions are too complex to deal with
due to their discontinuity.

To alleviate this issue, we follow the approach proposed
in [31], i.e., approximating the sign function by a smooth
function denoted lεγ , and defined as

lεγ(x) =

{
a|x|2, if |x| ≤ ε
lγ(x)− b, if |x| > ε,

(62)

with appropriate constants a and b so that the approximations
lεγ are continuous and differentiable (cf. [31]), and where lγ
belongs to the family of functions:
a) `γ-norm [44–46]:

lγ(x) = |x|γ , γ ∈ (0, 1]
b) `1-norm approximation from [47, 48]:

lγ(x) = ln(1 + |x| /γ) ln(1 + 1/γ), γ > 0
c) lower bound of sign function from [49]:

lγ(x) = 1− e−|x|/γ , γ > 0,
involving a tuning parameter γ for each case. Thus, this
class covers most of standard 1-dimensional sparsity forcing
penalties (i.e., a proxy of the sign function). Notice that this
class is still valid for data with complex entries by reading |·|
as the modulus function. We have the following proposition
(cf. [31, Section III]):

Proposition 6. The function lεγ in (62) is majorized at point
xt by the following quadratic surrogate:

lεγ(x|xt) ≤ φ(xt)|x|2 + const. (63)

where the function φ depends on lεγ as:
a) `γ-norm [44–46]:

φ(xt) =

{
(γ/2)εγ−2, |xt| ≤ ε
(γ/2) |xt|γ/2 , |xt| > ε

b) `1-norm approximation [47, 48]:

φ(xt) =

{
( 2ε(γ + ε) ln(1 + 1/γ) )−1, |xt| ≤ ε
( 2 ln(1 + 1/γ) |xt| (|xt|+ γ) )−1, |xt| > ε

3Note that this function is not a proper norm, but we still adopt the common
abuse of terminology.

c) lower bound of sign function [49]:

φ(xt) =

{
e−ε/γ/2γε, |xt| ≤ ε
e−|xt|/γ/2γ |xt| , |xt| > ε

Equality is achieved at xt.

The functions lεγ will serve as basic building blocks to
build sparsity promoting penalties on U. In the following
we propose two functions that extend the approach of [7],
with corresponding surrogates functions in the form of (18).
Our aim is to give insight on how to build meaningful cost
functions that can be easily handled within the framework of
Section III: the key trick is to obtain a series of inequalities,
notably using Proposition 6, that leads to a quadratic surrogate
of U over St(p, k). At this step, Proposition 3 can be applied
to obtain a linear majorizer on St(p, k).

1) Proxies of the `0-norm on St(p, k): In order to mimic a
weighted `0-norm in (60), we consider the cost function:

r0 (U) =
k∑
r=1

ωr

p∑
i=1

lεγ ([ur]i) , (64)

where ωr are positive weights and with lεγ in (62). Such type
of penalty was initially proposed for Sparse PCA in [7] using
the `1-norm approximation [47, 48] (i.e., lεγ in the class b) of
the considered family)).

Proposition 7. The function r0 in (64) is majorized on the set
of unitary matrices St(p, k) at point Ut = [ut1| · · · |utk] as

r0 (U) ≤ Tr
{
HH

(
Ut
)
U
}

+ Tr
{
UHH

(
Ut
)}

+ const.,
(65)

with matrices H(Ut) ∈ Cp×k, Wr ∈ Cp×p, wr ∈ Cp×1
defined as 

H
(
Ut
)

=
[

W1u
t
1 | · · · | Wku

t
k

]
Wr = diag( wr − wmax

r 1p )

[wr]i = ωrφ
([

utr
]
i

)
wmax
r = max(wr),

(66)

with φ defined (depending on the chosen lεγ) in Proposition 6.

Proof. Proposition 6 allows to upperbound r0 in (64) at point
Ut as

r0(U) ≤
k∑
r=1

uHr (diag(wr)) ur + const., (67)

with wr defined in (66) and where equality is achieved at Ut.
Proposition 3 applied to each quadratic term of this majorizer
leads to the surrogate in (65) and (66).

2) Proxies of the mixed-norm on St(p, k): To mimic the
`2,0-norm in (61), the main idea is to involve a nonlinear
coupling among the elements in a row. We consider therefore
the cost function:

r2,0 (U) =

p∑
i=1

ln

(
1 +

k∑
r=1

lεγ ([ur]i)

)
. (68)

Notice that the function ln is essentially used in order to
obtain a surrogate satisfying (18). However, the main goal
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Algorithm 4 MM for RSPCA
1: initialize t = 0, U0

2: repeat
3: Compute M (Ut) with equation (55).
4: Compute the regularizer K (Ut) with (74)
5: Update Ut+1 = PSt

{
1
nM (Ut) UtH − λK (Ut)

}
6: t = t+ 1
7: until convergence criterion is met
8: Output: Û

of introducing coupling among the elements of each row is
achieved with this function.

Proposition 8. The function r2,0 in (68) is majorized on the
set of unitary matrices St(p, k) at point Ut = [ut1| · · · |utk] as

r2,0 (U) ≤ Tr
{
PH

(
Ut
)
U
}

+ Tr
{
UHP

(
Ut
)}

+ const.,
(69)

with 

P
(
Ut
)

=
[
X1u

t
1| · · · |Xku

t
k,
]

Xr = diag(xr − xmax
r 1p)

[xr]i = ωtnφ
(
[utr]i

)
xmax
r = max(xr)

ωti =

(
1 +

k∑
r=1

lεγ(
[
utr
]
i
)

)−1 (70)

with φ defined (depending on the chosen lεγ) in Proposition 6.

Proof. The function ln is concave, so it can be upperbounded
by its first order Taylor expansion in (68), giving:

r2,0(U|Ut) ≤
p∑
i=1

ωtn

k∑
r=1

lεγ ([ur]i) + const. (71)

with ωtn in (70). The rest of the proof follows similarly to the
one of Proposition 7.

B. Robust Sparse PCA (RSPCA): Proposed Algorithm

1) Formulation: From the generic formulation of (59) for
sparse PCA, we consider the following problem:

minimize
U∈St(p,k)

1

n

n∑
i=1

ρ
(
d2 (U, zi)

)
+ λξ (U) . (72)

where the data fitting term is a nonconvex RSR problem (cf.
Section V-C), and where ξ is either r0 in (64) or r2,0 in
(68). Hence, the proposed objective offers a quite modular
formulation that encompasses various RSR methods, and all
the family of regularization penalty from Section VI-A.

2) Algorithm derivation: In this section, an MM algorithm
is derived to aim at solving problem (72) by following the
framework proposed in Section III. To majorize the nonconvex
RSR cost, we apply the same steps as in Section V-C. The
penalty ξ can be majorized according to either Proposition 7
or 8. Thus, the objective in (72) can be majorized at point Ut

by a surrogate satisfying (18) with

R(Ut) =
1

n
M
(
Ut
)
Ut − λK

(
Ut
)

(73)

where M is defined in (55) and

K
(
Ut
)

=

{
H
(
Ut
)

in (66), if ξ = r0

P
(
Ut
)

in (70), if ξ = r2,0
(74)

Therefore, we can apply Algorithm 2, which leads to the
following MM iterations:

Ut+1 = PSt

{
1

n
M
(
Ut
)
Ut − λK

(
Ut
)}

. (75)

This algorithm is summed up in Algorithm 4 and will be
referred to as Robust-Sparse PCA (RSPCA).
Remark 5. Notice that we focused on the use of the RSR
functions from Section V-C in order leverage their robustness
properties. However, the proposed method can be generalized
to any data fitting term (e.g., more complex likelihood func-
tions) for which Algorithm 2 applies.

VII. SIMULATIONS

A. On MM algorithms with linear majorizers for St(p, k)

This section illustrates the computational complexity advan-
tage of the proposed Algorithm 2 in comparison to existing
state-of-the-art techniques. As an example, we consider min-
imizing the RSR cost in (49) with the Huber-type function
(52) with parameter T = 0.1. The data set is generated using
a spiked Gaussian model, i.e., z ∼ CN (0,SNR×U0U

H
0 +I),

with SNR = 10 and where U0 ∈ St(p, k) contains the first
k vectors of the canonical basis (this setting is chosen as
any rotation of the samples did not affect results in terms of
computational speed). The following methods are compared:
i) Steepest descent on the Stiefel manifold: for this algorithm,
we compare both the retraction using the Euclidean projection
[23]:

Ut+1 ← PSt

{
Ut − γtgradf |U

}
, (76)

and the retraction through the Q factor of the the QR decom-
position [18] (denoted qf{·}):

Ut+1 ← qf
{
Ut − γtgradf |U

}
, (77)

where γt is a step size, and gradf |U is the Riemmanian
gradient of f at U. The step size is computed at each iteration
with the standard Armijo rule. We also compare an implemen-
tation of [23] with a constant step size (selected as large as
possible, while ensuring convergence); ii) MM with quadratic
majorization: as discussed in section V-C, an iteration of this
algorithm is solved either with the SVD of M(Ut) in (55)
(fixed point [13]), or the SVD of appropriately normalized
samples (FMS [15]). In the considered scenarios n < p so
the second option is chosen, as it is more computationally
efficient; iii) MM with linear majorization (Algorithm 2): this
algorithm is detailed in (56) and also corresponds to the fixed
point iterations referred to as R1-PCA in [14].

Figure 2 displays the convergence of the algorithms in terms
of objective value for different scenarios with varying k (p =
1000 and n = p/2). The overall performance is compared
both in terms of the number of iterations and the computation
time. In terms of required number of iterations, the MM with
quadratic majorization appears faster. This is due to the fact
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that it exploits a tighter upperbound than the MM with linear
majorization (cf. Section V-C). The speed of the steepest
descents could be improved by the use of an exhaustive line
search. Still, the Armijo rule offers a significant improvement
compared to the constant step size. When it comes to the
computation time, the MM with linear majorization appears
faster. Indeed, each iteration of this algorithm requires only
the computation of the thin-SVD of an p × k matrix, rather
than the k strongest eigenvectors of a p × n matrix for
the MM with quadratic majorization. The steepest descent
the Armijo rule requires to run a line search for the step
size. This involves evaluating the objective, therefore calls for
multiple retractions, which is computationally more intense.
The constant step size iterations are fast to compute, which
can compensate its slow convergence in terms of number
of iterations. Nevertheless, the step size had to be manually
tuned for each scenario. Thus, this algorithm corresponds to
a benchmark with little practical application

Figure 3 displays total computation time, i.e., time to reach
the stopping criterion ||Ut −Ut+1||∞ < 10−10, with respect
to the problem dimensions (scaled proportionally to to p). As
previously, we can notice that the MM with linear majorization
offers an interesting solution in terms of scalability.

B. On RSPCA algorithm

1) Validation on synthetic data: In this section, we val-
idate several properties of the RSPCA method on synthetic
examples. In order to clarify the exposition, the term RSPCA
will here denote the solution of problem (72) computed with
Algorithm 4. We will focus on the use of the following
parameters4: the RSR cost is ρH (cf. Example 2) with T = 0.1,
the sparse penalty is either r0 or r2,0, where lγε is from the
proxy of the `1-norm (i.e., a)) in the familly of proposed
proxies), with ε = 10−2 and ωr = 1∀[[∈ 1, k]], and varying
regularization parameter λ. the dimensions are p = 100,
k = 15.

First, we study the performance of RSPCA in a standard
PCA setting. Samples are drawn from z ∼ CN (0,SNR ×
UUH + I), where U are the first k eigenvectors of a the
Topelitz matrix [ΣT ]i,j = (θ(1 + i)/

√
2)|i−j| and SNR =

10. For a given estimator Û, the performance criterion is the
average fraction of recovered energy:

AFE = E
[
Tr{ÛHUUHÛ}/k

]
, (78)

which is evaluated through 102 Monte-Carlo simulations.
Figure 4 (resp. 5) displays the AFE of RSPCA with r0 (resp.
r2,0) penalty in function of n and for various λ. Note that
without regularization (λ = 0) the RSPCA corresponds to
RSR with the Huber cost [14, 15]. In a Gaussian setting, it
is interesting to note that there is little loss due to the usage
of the Huber cost function when comparing with the standard
PCA, which corresponds to the maximum likelihood estimator
in this case [1]. If a sparse regularization penalty is involved,

4We simply note that the general conclusions drawn from these examples
can also be obtained with the other robust-fitting/sparse-promoting function
presented in this paper, up to a good selection of the tuning parameters

two regimes can be observed. When the underlying subspace
basis is actually sparse (θ = 0 leads to canonical eigenvectors),
this penalty significantly improves the recovery. When the
underlying subspace basis is not sparse (θ = 0.5), the recovery
can be severely impacted by a strong penalty promoting this
property. However, we can notice that RSPCA appears robust
to the mismatch when λ is set low enough.

Second, we study the robustness of RSPCA to corruption by
outliers in the sample set. The simulation setup is built around
the so-called haystack model [50], which corresponds here to
a mixture of orthogonal Gaussian distributions plus additive
noise:

{zi}ni=1 = {{zini }nin
i=1, {zouti }ni=nin+1}

zin ∼ CN (0,SNR×UUH + I)

zout ∼ CN (0,ONR×U⊥UH
⊥ + I),

(79)

where U and U⊥ are built from the canonical basis such
that UHU⊥ = 0, SNR is signal to noise ratio, and ONR
is outlier to noise ratio. We will compare four algorithms: i)
RSPCA with least square fitting (cf. Example 1) and λ = 0
(i.e., the standard PCA); ii) RSPCA with least square fitting
and λ = 100; iv) RSPCA with Huber cost (cf. Example 2) and
λ = 0 (i.e., RSR); iii) RSPCA with Huber cost and λ = 1000.
The aim is to illustrate the contributions of both the robust
fitting objective and the sparsity promoting penalty. Figure 6
displays the AFE of each algorithm with respect to ONR and
the fraction of outliers in the sample set. We can notice that the
use of a robust cost improves the performance compared to
the standard PCA. Moreover, the introduction of the sparse
penalty improves the results in terms of AFE (as seen in
Figures 4-5), but also interestingly improves the robustness
of the estimation process. Here, it is worth mentioning two
critical points: a) RSPCA appears very robust when a valid
signal subspace basis is actually sparse, which is probably
because the sparse penalty contributes to naturally discard
dense outliers. If the true subspace basis is dense, results
can be degraded in practice (as also observed in Figures
4-5). b) The starting point plays an important role in the
achieved robustness of all iterative algorithms (even without
regularization). In these simulations, we used the spherical
PCA (PCA applied on the normalized samples) as starting
point. It has been observed that the achieved robustness can
be lowered by using the standard PCA instead.

2) Experiment on real data: In this experiment, we com-
pare the performance of RSPCA with state of the art sparse
PCA algorithms on the Leukemia data set [51]5. RSPCA build
with a GMC cost (cf. Example 4), r0 penalty and lγε is from
the proxy of the lower bound of the sign function (i.e., c) in
the familly of proposed proxies). Again, similar conclusions
can be drawn with other objectives, up to minor changes of
the parameters. RSPCA is computed with Algorithm 4 using
an outer loop, decreasing ε from 10−1 to 10−7 in order to
avoid potential local minimums. This algorithm is compared
to ALSPCA [52], SPCArt and rSVD-GP from [6]. The studied

5From https://github.com/ramhiser/datamicroarray/wiki/Golub-(1999)
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Fig. 2. Gap to minimal value (attained by any converging algorithm) versus time and number of iterations for various algorithms called on problem (49):
Steepest descent using Euclidean projection retraction with constant step size (�) or Armijo rule (∗). Steepest descent using QR retraction with Armijo rule
(+). MM with quadratic majorizer (◦). MM with linear majorizer (�). Simulation carried out on MATLAB R2019a with Intel(R) Core(TM) i7-8850H CPU
2.60GHz processor.
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Fig. 3. Time to reach the convergence criterion ||Ut −Ut+1||∞ < 10−10

versus dimension p (and fixed ratios k = p/20, n = p/2) for various
algorithms called on problem (49).

performance criteria are the following

SP(Û) = 1− ||Û||0/(pk)

ÃFE(Û) = AFE(span(Û))

NOR(Û) = ||ÛHÛ− I||2F

(80)

which measure respectively the sparsity (expected to be close
to 1, i.e., 100%), the explained variance (expected to be close
to 1, i.e., 100%), and the non-orthonormality (expected to
be low). Notice that the ÃFE criterion slightly favors the
algorithms that relax the orthonormality constraint in this
case. Figure 7 displays the ÃFE and NOR versus SP for
the studied sparse PCA algorithms on the Leukemia data set.
Interestingly, we can notice that RSPCA achieves state of the
art performance when it comes to the explained variance-
sparsity trade-off, but without relaxing the orthonormality
constraint, as done by the other algorithms.
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Fig. 4. AFE versus n for various algorithms in a standard PCA context.
p = 100, k = 10, SNR = 10. RPSCA built with r0 penalty.

VIII. CONCLUSION

This paper presented an optimization framework to deal
with orthonormality constraints based on Majorization-
Minimization. The core idea is to systematically obtain lin-
ear surrogates in order to formulate iterations as Euclidean
projection problems. Such majorizers can be obtained for a
large family of functions for which we presented a catalog.
We also exhibited some links between this approach and well-
known algorithms. Finally, the presented framework drove
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the formulation of a novel sparse PCA algorithm (namely,
RSPCA), combining a robust subspace recovery cost and
sparsity promoting penalties. Several experiments illustrated
the interest of the approach, both in terms of computational
and estimation performance.
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