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Abstract—Phase linking is a prominent methodology to esti-
mate coherence and phase difference in interferometric synthetic-
aperture radar. This method is driven by a maximum likelihood
estimation approach, which allows to fully exploit all the possible
interferograms from a time series. Its performance is, however,
known to be affected by the accuracy of the covariance matrix
estimation step, which usually requires to introduce additional
prior information on its structure when there is a small sample
support (spatial window). Moreover, most phase linking algo-
rithms are built upon the sample covariance matrix, due to the
assumption of an underlying Gaussian distribution. In a scenario
where SAR data is high resolution, or when the study area is
spatially heterogeneous (e.g., urban area), this assumption can
also limit the accuracy of the covariance matrix estimation step.
Considering the two aforementioned issues, we introduce alter-
native statistical models, whose maximum likelihood estimators
then yield new phase linking algorithms. In order to be robust to
non-Gaussian data, we consider the use of a more general model
of scaled mixture of Gaussian. To address small sample support
issues, we also generalize this approach to a possibly low-rank
structured covariance matrix. A unified algorithm to perform
phase linking given these models is then derived and validated
by simulations and a real data case (Sentinel-1 data).

Index Terms—interferometric synthetic aperture radar (In-
SAR), distributed scatterers (DS), phase linking (PL), maximum
likelihood estimator (MLE), Scaled Gaussian distribution, covari-
ance matrix, low-rank (LR).

I. INTRODUCTION

Multi-Temporal Interferometry SAR (MT-InSAR) analysis
has become an useful tool to estimate deformation in sub-
centimeters accuracy with low cost and over large coverage.
The accuracy of the estimated deformation, however, is limited
by target decorrelation. To overcome with this constraint, two
groups of approaches were introduced: Permanent Scatterer
Interferometry (PSI) and Distributed Scatterer Interferometry
(DSI), corresponding to Permanent Scatterer (PS) and Dis-
tributed Scatterer (DS), respectively. PSI focuses on mini-
mizing the signal decorrelation by using point-wise stable
scatterers which are known as PS. Despite the preserved
spatial resolution, this method is limited by its sparse PS
points coverage particularly in natural areas. On the other
hand, DSs are distributed over several resolution cells which
endure the decorrelation over time. To reduce the target
decorrelation, Small BAseline Subset (SBAS) approach in DSI
uses small spatial and temporal baselines SAR image pairs. An
example of this approach is given in [1]. Another important
approach in DSI is Phase Linking (PL), or Phase Triangulation

P. V. H. Vu is with ONERA-DEMR, University Paris Saclay, and with
LISTIC (EA3703), University Savoie Mont-Blanc. A. Breloy is with LEME
(EA4416), University Paris Nanterre. F. Brigui is with ONERA-DEMR,
University Paris Saclay. Y. Yan and G. Ginolhac are with LISTIC (EA3703),
University Savoie Mont-Blanc.

Algorithm (PTA) [2]. The main idea of PL is to fully exploit
all possible combinations of a SAR image stack, which is
expected to improve Signal-to-Noise ratio (SNR) of single
referenced phase estimation and thus, increase the accuracy of
deformation retrieval. In this setup, the temporal and spatial
decorrelation is generally properly tackled by weighting all
interferograms in a maximum likelihood sense.

Indeed, phase linking was initially expressed as a phase
estimation problem given an assumed proper (circular) multi-
variate model [2, 3]. Under this assumption, the phase differ-
ences (interferograms) directly appear in the structure of the
covariance matrix of SAR images. The PL algorithm then aims
to solve the maximum likelihood estimation of these phases for
a given plug-in estimate of the coherence. Subsequent to PL,
other frameworks integrated this maximum likelihood based
scheme: an overview of the different objective functions and
plug-in estimates is for example presented in [4]1. Notably,
low-rank structured covariance matrix estimates have been
used to improve the estimation accuracy in CAESAR [5] and
EMI [6]. This was motivated by the fact that DSI approaches
degrade the spatial resolution because of the multi-looking
applied during the interferogram computation. In principle, the
number of samples within a multi-looking window should be
at least twice the number of images in the time series dataset
to ensure the accuracy of the covariance matrix estimation.
Therefore, the trade-off between the quality of the covariance
matrix and an improved spatial resolution is a problem for
long time series. The low-rank structure of the covariance
matrix is an assumption that is well-motivated from empirical
measurements, and allows to improve this trade-off in practice.
Alternatively, the sequential estimator [7] provides a way to
process a long temporal SAR data stack by applying PL on
small batches given by the time series data division.

In the aforementioned works, the phase estimation is related
to an underlying Gaussian model. The plug-in estimates for
PL are consequently built upon the sample covariance matrix.
However, it is acknowledged that target decorrelation and
atmospheric phase screen (APS) can lead to non-Gaussian
statistics [8]. Moreover, this assumption can also be untrue
in case of heterogeneous areas and high spatial resolution
data. When dealing with heavy-tailed distributions, the sample
covariance matrix is not an accurate estimate, which severely
degrades the performance of PL-based schemes.

In this paper, we propose to tackle this issue by reformulat-
ing the phase estimation problem as a maximum likelihood of

1Compared to SBAS approaches, PL-based methods must invert a full
covariance matrix, which can be costly in terms of computational time.
However, using the full covariance matrix provides sufficient redundancy and
interferograms of various temporal baselines, which allows mitigating phase
bias and increasing the accuracy of the phase estimates.



2

a larger class of statistical models. We consider modelling the
samples as following a mixture of scaled Gaussian distribu-
tions. Indeed, such model is well known to provide a good em-
pirical fit to high resolution radar data, and ensures robustness
to a heavy-tailed distribution within the large family of com-
plex elliptically symmetric distributions [9]. For this model,
we additionally consider the possibility for the covariance
matrix to be low-rank structured as in [4–6]. To perform phase
linking under these assumptions, we consider the problem of
joint maximum likelihood estimation of covariance coefficients
and the phases differences (a slight reparameterization of the
PL covariance structure, further discussed in the paper). This
model was recently addressed in [10, 11] for the Gaussian
case, and compared favorably to PL algorithms that rely on
plug-in estimates. We therefore generalize this approach to
mixture of scaled Gaussian distributions and structured covari-
ance matrices. The optimization of the likelihood is tackled
in an unified way using a block coordinate descent (BCD)
and the majorization-minimization (MM) algorithm. We derive
4 algorithms that allow for investigating various options of
SAR data model and structure of the covariance matrix: GPL
solves the maximum likelihood for the Gaussian model and
full-rank covariance matrix [10, 11], SGPL generalizes this
approach to mixture of scaled Gaussian models, while GPLLR

and SGPLLR correspond to their low-rank counterparts.
The proposed models and algorithms are validated by simu-

lations and a real data case study. The real dataset is composed
of a time series of Sentinel-1 images of Mexico City acquired
from July 3rd, 2019 to December 18th, 2019. This area is of
particular interest in InSAR, as the subsidence rate can reach
up to 40 cm/year due to over exploitation of aquifers [12]. In
both cases, our approaches are compared to the standard PL
methodology.

The rest of the paper is organized as follows. Section II
presents the mixture of scaled Gaussian model and the multi-
temporal InSAR covariance matrix structure.

Section III discusses an alternate parameterization of the
covariance structure, its practical interest, and its implication
in terms of phase closure in InSAR. Section IV details the
maximum likelihood algorithms derivations. Finally, Section
V and VI display the synthetic data simulations and the real
data experiments, respectively.

II. MODELING SAR IMAGE TIME SERIES

From a given stack of N co-registered SAR images, we
consider a local patch of L multivariate pixels denoted as
{xi}Li=1, with xi ∈ CN , ∀i ∈ [[1, L]] (cf. Fig. 1). A
multivariate pixel xi thus contains a local observation for N
snapshots, i.e.

xi =
[
x1
i , · · · , xN

i

]⊤ ∈ CN . (1)

We will assume that the set {xi}Li=1 is a homogeneous
patch containing L adjacent pixels with similar scattering and
statistical properties. Thus {xi}Li=1 is a set of i.i.d. vectors
that are realizations of the random variable x. The aim of this
section is to formalize several statistical models where phase
differences appear as parameters. This will allow us to derive

Fig. 1: Stack of N co-registered SAR images and multi-
looking window: gray pixels represent the current local patch,
denoted {xi}Li=1.

Fig. 2: Eigenvalues of the sample covariance matrix in low
and high coherence areas of the considered Sentinel-1 dataset,
with N = 15, L = 64.

a new phase difference estimation algorithm from a maximum
likelihood approach in section IV.

A. Covariance structure

From the standard physical considerations of SAR inter-
ferometry, we assume the following first and second order
moments relations:

E [xn] = 0, ∀n ∈ [[1, N ]]

E
[
xk(xl)∗

]
= υk,lσkσle

j(θk−θl), ∀(k, l) ∈ [[1, N ]]2
(2)

where
• σ2

n = E
[
xn(xn)H

]
is the variance of xn. We denote the

vector of standard deviations σ = [σ1, · · · , σN ].
• υk,l ∈ [0, 1] is the coherence coefficient between xk

and xl. We denote Υ the coherence matrix, with entries
[Υ]k,l = υk,l. Also remark that [Υ]l,l = 1,∀l ∈ [[1, N ]].

• θn is the phase at instant n. We denote the phase vector
θ = [θ1, · · · , θN ], and the corresponding vector of
complex arguments is

wθ =
[
ejθ1 , · · · , ejθN

]
∈ TN , (3)
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where TN = {w ∈ CN | |[w]i| = 1, ∀i ∈ [[1, N ]]} is the
N -torus of phase-only complex vectors. By convention,
we will use the reference θ1 = 0, which is equivalent to
[wθ]1 = 1.

The covariance structure in (2) can then be rewritten in matrix
form as

E
[
xxH

] ∆
= C = diag(wθ) ((σσ

⊤)⊙Υ)︸ ︷︷ ︸
Ψ

diag(wθ)
H . (4)

Where Ψ is coherence matrix scaled by the variance coef-
ficients. We also can notice that this decomposition coincides
with the modulus-argument decomposition, i.e.:

C = mod(C)⊙ arg(C)
∆
= Ψ⊙ (wθw

H
θ ), (5)

In the standard case, the matrix Ψ is assumed to have
no specific structure besides being symmetric with positive
entries. However, it is generally relevant to assume that it also
exhibits a low-rank structure, i.e. that it can be decomposed
as Ψ = ΨR + σ2I, where ΨR is symmetric of rank R, and
σ2 ∈ R∗

+ is the noise floor variance.
This assumption is related to low-rank linear models [13]

and is often validated from empirical measurements. For
example, Fig. 2 displays the spectrum of the sample covariance
matrix for two areas of the Sentinel-1 dataset, where we
can indeed observe a low-rank structure. Accounting for this
structure in the phase estimation problem turns out to be
beneficial in terms of phase estimation accuracy [4]. It also
allows for improving the spatial resolution, i.e., estimating the
phases with a reduced sample size L. In practice, the rank
R can be tuned from observations, or estimated locally using
model-order selection methods2. Simulations in section V will
also exhibit that the proposed methods are robust to slight
mismatches of R in practice. Thus, we consider setting a single
fixed rank R to process the whole data cube.

B. Scaled mixture Gaussian model for SAR images

Given the first and second order moment relations in (2), a
common assumption is that {xi}Li=1 is distributed according
to a complex circular (proper) Gaussian distribution, i.e.,
x ∼ CN (0,C). This yields the corresponding negative log-
likelihood of the dataset

LG(C) ∝ Tr
{
C−1S

}
+ log |C|+ const. (6)

with S = 1
L

∑L
i=1 xix

H
i . This model assumption is the base of

the well known phase linking algorithm (detailed in the next
section).

In this work, we propose to consider an alternative mul-
tivariate model. The motivation comes from empirical mea-
surements exhibiting heavy tails. For example, Fig. 3 presents
the histogram of the real part of a Sentinel-1 SLC inside
a spatial window, where the empirical distribution is more
in accordance with a Generalized Gaussian distribution. A
practical and robust way to account for this type of measure-
ments is to consider scaled Gaussian models. In this case,

2About rank estimation, the reader is referred to the overview [14], and
more recent methods using shrinkage [15], random matrix theory [16], or
M -estimators [17].

Fig. 3: Empirical distribution of the real part of Sentinel-1
SLC samples taken from a 50 × 50 window on the image
acquired on Jul 3, 2019.

the data is modeled as Gaussian conditionally to an unknown
deterministic scale, i.e. xi ∼ CN (0, τiC), ∀i ∈ [[1, L]]. This
yields the corresponding negative log-likelihood of the dataset

LSG(C) ∝
L∑

i=1

[
xH
i C−1xi

τi
+ log |τiC|

]
+ const. (7)

A main interest of these models is that they allow for a
robust fit (i.e., suited to any underlying distribution) over the
whole family of complex elliptically symmetric distributions
[9], that encompasses generalized Gaussian, multivariate-t, K-
distribution, etc.

C. Phase linking algorithms and positioning of the contribu-
tions

Phase linking [2–4] refers to a maximum likelihood ap-
proach for the covariance structure (4)-(5) assuming the Gaus-
sian model. More precisely, phase linking corresponds to an
approximate maximum likelihood estimator of θ for a given
prior estimate of the matrix Ψ, denoted Ψ̂.

After several manipulations of the likelihood LG in (6) and
the covariance structure in (4)-(5), the phase linking problem
can be reformulated as

minimize
wθ

wH
θ (Ψ̂−1 ⊙ S)wθ.

subject to wθ ∈ TN

θ1 = 0

(8)

that can be solved, e.g., with majorization-minimization fixed
point iterations (cf. Section IV-C). At first, phase linking was
proposed with Ψ̂ = mod(S), i.e., the modulus of the sample
covariance matrix. Improvements were then brought by rather
using plug-ins of low-rank approximations of this estimate
(see, e.g., [4]).

Notice that, in this perspective, the phase-linking algorithm
is bound to be a two-step approach that relies on an in-
termediate plug-in estimate of the variance and coherence
coefficients (i.e., the matrix Ψ). Most notably, there is, to
the best of our knowledge, no explicit (nor tractable) joint
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maximum likelihood estimators for the modulus-argument
decomposition when assuming some additional phase and/or
low-rank structure in the covariance matrix. This is because
the modulus and argument are not holomorphic functions
[18, 19], which probably explains why the current literature
on phase linking is focused on two-steps algorithms (as
also noticed in [10, 11]). To tackle this issue, the section
III presents a suitable (i.e., differentiable for optimization)
alternate decomposition of the problem, which was considered
(though, not clearly explicited) within Gaussian models in
[10, 11]. This parameterization allows deriving joint maximum
likelihood estimation algorithms that generalize the phase
linking approach to non-Gaussian distributions and structured
covariance matrices, which is presented in section IV.

III. AN OPTIMIZATION-ORIENTED REPARAMETERIZATION
OF THE COVARIANCE MATRIX

A. Real core and phase decomposition

We consider an alternate decomposition of the covariance
matrix that relies on the following reparameterization of the
second order moment:

E
[
xk(xl)∗

]
= γk,lσkσle

j(θk−θl), ∀(k, l) ∈ [[1, N ]]2, (9)

where all the quantities from (2) hold, except for the coefficient
γk,l, defined as:
• γk,l ∈ [−1, 1] is the real correlation coefficient between

xk and xl. We denote Γ the real correlation matrix, with
entries [Γ]k,l = γk,l, and where [Γ]l,l = 1,∀l ∈ [[1, N ]].

This yields, in matrix form, the following covariance structure

E
[
xxH

] ∆
= C = diag(wθ) ((σσ

⊤)⊙ Γ)︸ ︷︷ ︸
Σ

diag(wθ)
H . (10)

where Σ ∈ S++
N (S++

N is the space of N × N symmetric
positive definite matrices). We refer to this parameter Σ as
the real core of the covariance matrix. In order to account for
a potential low-rank structure (cf. motivations in section II),
we also consider the optional structure

Σ = ΣR + σ2I, with ΣR ∈ S+
N,R, (11)

where S+
N,R denotes the space N ×N positive semi definite

symmetric matrices of rank R.
To summarize, we denote the covariance matrix parameter-

ization from (10) as

C (Σ,θ)
∆
= diag(wθ)Σdiag(wθ)

H = Σ⊙ (wθwθ)
H (12)

where
• wθ ∈ TN is the vector of complex arguments in (3).
• Σ is the real core of the covariance matrix, which is either

unstructured (in S++
N ), or low-rank structured as in (11).

In section IV, we will rely on the core-correlation-phase
decomposition from (10) (rather than the modulus-argument
decomposition in (4)) to derive phase-difference estimation
algorithms. The main underlying motivation is that S++

N (resp
S+
N,R) and TN are smooth manifolds. This makes (10) more

suited to the formalization and resolution of optimization prob-
lems, such as joint maximum likelihood estimation. Notice that

the two decompositions still coincide when Σi,j ≥ 0, ∀i, j ∈
[[1, N ]] (i.e., (Σ = Υ)). However, considering correlation
rather than coherence coefficients (i.e., Σ ∈ S++

N ) is more
general and covers a larger matrix space. In the specific context
of phase-difference estimation, it has an acknowledged cost
of inducing potential ambiguities regarding the phase-closure
property. This issue and several solutions are discussed in
detail in section III-B. Finally, a clear practical interest of such
approach is illustrated in the experiments of both synthetic
simulations (Section V) and real data (Section VI).

B. Notes on phase closure ambiguities

From the model (2) we have the phase differences between
two images indexed k and l defined as ∆k,l = θk − θl. Phase
closure (or phase consistency) refers to the property

∆i,j +∆j,k +∆k,i = 0 (13)

that should be satisfied for all triplet {i, j, k}. Indeed, phase
closure is an important property in MT-InSAR, as it is related
to the obvious continuity of physical phenomena, such as Earth
displacement. All DS based multi-temporal InSAR approaches
are based on multi-looking (spatial average) to reduce the
decorrelation noise, the phase closure is therefore not respected
in most cases due to either statistical or physical properties of
targets present in SAR images [20]. For example, given any
estimate of the covariance matrix Ĉ, a direct approach to phase
difference estimation is to produce estimates from (2) as

∆̂k,l(Ĉ) = arg{[Ĉ]k,l}, (14)

which does not generally satisfy phase closure if such structure
is not imposed in the estimation process of Ĉ.

Leveraging the phase closure (in particular that related to
statistical properties of targets) within a redundant interfer-
ogram network has been the core of many multi-temporal
InSAR approaches. For example, phase linking approaches
produce estimates that satisfy naturally this property by the
way of constructing the phase difference. SBAS approaches
retrieve the phase closure based on a minimum variance
estimator [1]. Recently, [21, 22] indicate that using only
small baseline interferograms results in a phase bias related to
physical properties of targets, whereas approaches that use the
full covariance matrix of SAR images like phase linking can
mitigate this bias. Several recent works like [23–25] propose
some post-processing approaches to correct the small baseline
interferogram induced phase bias and thus to retrieve the phase
closure.

In the present work, a covariance matrix estimate will be
obtained as C(Σ̂, θ̂) defined in (12), where the couple {Σ̂, θ̂}
is an output of a maximum likelihood estimation algorithm
(cf. Algorithm 1, derived in section IV).

A first option consists in computing phase difference esti-
mates from (14) applied to the estimate C(Σ̂, θ̂). However,
since

γk,lσkσle
j(θk−θl) = (−γk,l)σkσle

j(θk−θl)+π (15)

provides two valid candidates for the decomposition (2) of the
entry [C(Σ̂, θ̂)]k,l, this method can produce unexpected phase
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Σ ∈ S++
N Σ LR as in (11)

Gaussian (LG ) GPL GPLLR

Scaled Gaussian (LSG ) SGPL SGPLLR

TABLE I: Statistical models and corresponding acronyms

jumps3 of ±π. We also notice that if some elements of the real-
core estimate Σ̂ are non-positive, the resulting estimates of
phase differences do not satisfy the phase closure (conversely,
if Σ̂ has all positive entries, there is no ambiguity). The second
option is thus to use the output complex argument estimate wθ̂
in order to construct phase difference estimates as

∆̂k,l(wθ̂) = arg{[wθ̂w
H
θ̂
]k,l}, (16)

that satisfy the phase closure by construction.
When applied to real world data, we observed that the

first option (i.e., (14) applied to the output estimate) provides
cleaner interference maps.

Thus we advocate this simple solution when only focusing
on phase difference between 2 given dates of the time series.
For applications where the phase closure property is at stake,
(16) offers a better alternative, but we found beneficial to
perform a sanity check regarding the entries of the entries
of Σ̂. For example, when all entries are negative, it means
that a constant π has been absorbed. In more complex cases
(i.e., with ambiguities) an interesting solution comes from
focusing on the first above-diagonal elements

[
C(Σ̂, θ̂)

]
k,k+1

and carefully integrating the phase shifts between each date.

IV. MAXIMUM LIKELIHOOD ESTIMATION IN SCALED
GAUSSIAN MODELS

In this section, we propose an unified block-coordinate
descent algorithm to solve for the maximum likelihood es-
timation problem under the various models defined in section
II and III. The modeling options and corresponding acronyms
are defined in Table I. First, remark that the likelihood LG is
obtained as LSG with τi = 1, ∀i ∈ [[1, L]]. Hence, we can
focus on the generic problem

minimize
Σ,θ,{τi}L

i=1

LSG (C (Σ,θ))

subject to Σ ∈ S++
N

Σ as in (11) (optional)
θ1 = 0

(17)

and simply skip the block update of {τi}Li=1 to solve for
Gaussian maximum likelihood. The updates for the block-
coordinate descent algorithm are detailed in the following
subsections, and the corresponding algorithm is reported in
the table Algorithm 1.

3We still note that this ambiguity appears to be inherent to the multi-
temporal phase difference estimation problem, as we observed biases and
phase jumps of ±π even with phase linking algorithms that rely only on
plug-in matrices with only positive entries (see, e.g., phase histograms of PL
algorithm in figure 4).

Algorithm 1 BCD algorithm for phase estimation

1: Entry: Samples {xi}Li=1, model choice in Table I
2: Set τi = 1, ∀i ∈ [[1, L]] and S̃ = S
3: repeat
4: if (model is LSG)
5: Update {τi}Li=1 with (19)
6: Update S̃ with (21)
7: Update Σ with (25)
8: if (model is LR)
9: Use projected update of Σ with (26)-(27)

10: Call Algorithm 2 with M = Σ−1 ⊙ S̃
11: Update θ from the output w of Algorithm 2
12: until Convergence
13: Output: MLEs Σ, θ and C(Σ,θ)

A. Update {τi}Li=1

For fixed Σ and θ, the matrix C(Σ,θ) is constant and thus,
will be denoted C to lighten the exposition. Updating {τi}Li=1

requires to solve the L separate sub-problems

minimize
τi

xH
i C−1xi

τi
+N log τi. (18)

This yields closed form solutions for the update as

τ⋆i =
xH
i C−1xi

N
, ∀i ∈ [[1, L]]. (19)

For the next steps, the variables {τi}Li=1 will remain constant.
Hence it will be practical to introduce the notation

LSG(C|{τi}Li=1) = Tr
{
C−1S̃

}
+ log |C|, (20)

with the conditional re-scaling of the samples

S̃ =
1

L

L∑
i=1

x̃ix̃
H
i , with x̃i = xi/

√
τi. (21)

B. Update Σ

First, note that we have the relations

C−1 (Σ,θ) = diag(wθ)Σ
−1diag(wθ)

H (22)

and
log |C (Σ,θ) | = log |Σ| (23)

Thus, updating Σ for fixed θ and {τi}Li=1 requires to solve
the problem

minimize
Σ

Tr
{
Σ−1diag(wθ)

H S̃diag(wθ)
}
+ log |Σ|

subject to Σ ∈ S++
N

Σ as in (11) (optional)
(24)

with S̃ defined in (21). If no spectral structure is imposed
on Σ, the minimizer is then obtained as the real part of the
modified sample covariance matrix

Σ⋆ = real(diag(wθ)
H S̃diag(wθ)). (25)

Alternatively, if we impose the additional structure as in (11),
the solution is given as [13]

Σ⋆ = real
(
PR

{
(diag(wθ)

H S̃diag(wθ))
})

(26)
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where PR is the projection operator on the set of matrices
structured as S+

N,R plus scaled identity:

PR : Σ
EVD
= Udiag(d)UH 7→ Udiag(d̄)UH

with d̄ = [d1, ..., dR, d̄, ..., d̄]

and d̄ =
∑N

i=R+1 di/(N −R)

(27)

C. Update θ

From the relations (22), (23), and

Tr
{
diag(wθ)Σ

−1diag(wθ)
H S̃

}
= wH

θ (Σ−1⊙S̃)wθ, (28)

the problem of updating θ with fixed Σ and {τi}Li=1 reads

minimize
θ

wH
θ (Σ−1 ⊙ S̃)wθ

subject to wθ =
[
ejθ1 , · · · , ejθN

]
θ1 = 0

(29)

which is a modified instance of the phase linking problem
as stated in (8). For the sake of completeness, the remaining
of this section briefly presents the derivations of [11] that
proposed a majorization-minimization algorithm to solve this
phase linking step.

For any phase linking problem, we need to solve the generic
formulation

minimize
w∈TN

wHMw (30)

with M ≽ 0. The resolution of (30) then yields a solution
θ⋆ for (29) from the phases of a solution w⋆ of (30), when
plugging M = Σ−1 ⊙ S. Also remark that the objective
function in (30) is invariant to a constant phase-shift of
all entries, thus the constraint θ1 = 0 can be achieved by
subtracting θ1 to all the updated phases a posteriori. To solve
the problem (30), we will use the majorization-minimization
(MM) framework: the MM algorithm is an iterative optimiza-
tion procedure that operates with two steps4: i) (majorization)
at current point wt find a surrogate function g(·|wt) so that it
is tangent to the objective, f(wt) = g(wt|wt), and majorizes
it, f(w) ≤ g(w|wt), ∀w ∈ TN ; ii) (minimization) obtaining
the next iterate as wt+1 = argminw∈TN

g(w|wt). This
algorithm enjoys nice convergence properties [26], notably a
monotonic decrement of the objective function at each step.
More details on this framework can be found in [27, 28]. The
main interest of this approach is that it can yield a sequence of
sub-problems that are easily solved (e.g., in closed-form). The
two MM steps are derived for problem (30) in the following.

Notice that if we restrict w to the constrained set TN , we
have the relation

wH(M− λM
maxI)w = wHMw −NλM

max︸ ︷︷ ︸
const.

, ∀w ∈ TN (31)

so optimizing either the objective in (30) or (31) will lead to
the same solution. The quadratic form wH(M− λM

maxI)w is
concave so that it can be majorized at point wt by its first
order Taylor expansion

g(w|wt) = 2Re{wH (M− λM
maxI)wt︸ ︷︷ ︸

−w̃t

}+ const. (32)

4Notations in this short introduction match problem (30) for convenience.

Algorithm 2 MM algorithm for Phase-linking problem (29)

1: Entry: M ∈ CN×N , w1 ∈ TN (starting point)
2: repeat
3: Compute w̃t = (λM

maxI−M)wt

4: Update wt = PTN
{w̃t}

5: t = t+ 1
6: until convergence
7: Output: w ∈ TN

minimizing this surrogate corresponds to the problem

maximize
w∈TN

2Re{wHw̃t} (33)

whose solution is wt+1 = PTN
{w̃t}, where PTN

{·} is the
operator that projects each entry of a vector on the unit
sphere (i.e., entry-wise normalization). Hence, we have a
majorization-minimization algorithm to solve for (30). The
algorithm is summed up in the table Algorithm 2.

V. SIMULATIONS

A. Simulation parameters

We simulate two scenarios: a short and a longer temporal
dataset of respectively N = 5 and N = 15 images. The real
core Σ is set as a Toeplitz matrix representing the temporal
decorrelation: we use a coherence of ρ = 0.7, i.e. [Σ]i,j =
ρ|i−j| (so γi,j = ρ|i−j| and σi = 1). Phase differences are
generated linearly from 0 to 2 rad, i.e. ∆i+1,i = θi+1 − θi =
2/N rad. The resulting covariance matrix C is obtained with
(12). The L i.i.d. samples are simulated as xi ∼ CN (0, τiC).
In the Gaussian case, τi = 1, ∀i ∈ [[1, L]]. In the non-Gaussian
case, we sample each τi according to a Gamma distribution
τ ∼ Γ(ν, 1/ν), which yields a multivariate K-distribution [9].
In this setup, ν ∈ R+ pilots the tails of the distribution: ν →
∞ yields the Gaussian distribution as a limit case, while ν → 0
makes the distribution more heavy-tailed.

We assess the performance of the 4 proposed approaches
listed in Table I. The standard PL and 2-pass InSAR (2-p
InSAR) are used as baselines for comparison. It is recalled
that PL is the usual 2-step plug-in MLE approximation, where
Σ̂ = mod(S) is used as plug-in of Σ to solve for the PL
problem (8). This problem is here solved using the MM proce-
dure in Algorithm 2. The 2-p InSAR is a direct (unstructured)
estimate, where the phase differences are estimated from the
averaged pixel values given the spatial window.

As criterion, we consider the mean squared error (MSE) on
the estimation of entries of θ, which is further investigated by
displaying histograms of estimated phase θ at each date. All
mean squared errors and histograms are computed using 1000
Monte-Carlo trials.

B. Simulation results

We first analyse the set-up with a short time series of N = 5
dates. Fig. 4 presents the histograms of phase estimates for a
sample size of L = N + 1, and the corresponding MSEs
of the different estimates for the phase vector element θ2
when L increases. This display is analysed for 3 setups (from
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left to right): the Gaussian case, the K-distribution case with
respectively ν = 1 (heavy-tailed case), and ν = 0.1 (extremely
heavy-tailed). Notice that in this low-dimension setting, low-
rank methods are not particularly beneficial, and thus, not
displayed. Upon considering histograms of phase difference
estimates obtained with a small temporal baseline (Fig. 4),
both SGPL and 2-p InSAR exhibit superior performance
compared to the other methods, irrespective of the underly-
ing sample distribution. On the other hand, the estimations
produced by PL and GPL tend to deviate from the true phase
value when the samples exhibit a heavier-tailed distribution.
With an underlying Gaussian distribution, the phase difference
estimations from all approaches yield similar accuracy. We
notice that 2-p InSAR, despite of its simplicity, provides good
results compared to other multi-temporal InSAR approaches
in the low sample support. This is due to the small time series
size that limits the benefit of multi-temporal approaches. In
case of non-Gaussian models (ν = 1 and ν = 0.1), we
observe the robustness of SGPL to underlying heavy-tailed
distributions: the heavier the tail of the K-distribution, the
better the performance we can achieve with SGPL compared
to the others.

For a larger time-series (N = 15), we investigate the
impact of the temporal decorrelation by analysing the MSEs
on {θ2, θ4, θ7} with respect to increasing L. Fig. 5 displays
the results for an underlying Gaussian distribution, while
Fig. 6 displays the same results with an underlying heavy-
tail distribution (K-distribution with ν = 1). In the case of
Gaussian samples, differences in terms of MSE are mainly
observed with low sample support (L < 40). When L is
larger than 40, multi-temporal InSAR approaches yield similar
performance. The performance of 2-p InSAR degrades quickly
when the temporal decorrelation increases. The performance
of GPL and that of SGPL are comparable and they outperform
the state of the art. In the case of non-Gaussian samples
(Fig. 6), SGPL always provides the best results in terms of
MSE and appears more robust to a lower temporal coherence.
Furthermore, the use of LR structured covariance matrix in
both cases introduces a significant improvement at low sample
support, which implies the possibility of reducing the multi-
looking window size, hence preserving more spatial resolution,
especially in the case of long time series data. Note in
particular that, in the simulations, the true covariance matrix
does not have an exact LR structure; but GPLLR and SGPLLR

still provide significant improvement at low sample support
compared to GPL and SGPL.

Finally, Fig. 7 assesses the robustness of the low-rank
methods with respect to the choice of the rank R. As in the
previous simulation, the true covariance matrix of the tested
scenario is not low-rank. However, we can still observe that the
dimension reduction approach is beneficial in terms of MSE
at low sample support L. At larger L, the performance of the
low-rank estimate also remains close to the actual maximum
likelihood estimator (full-rank SGPL) for a reasonable range
of R, which illustrates that the method is also not critically
sensitive to a rank mismatch.

VI. REAL DATA

A. Study area and dataset

Located at the South of Mexico Valley and surrounded
by mountains, Mexico City is the largest and most populous
city of Mexico. The rapid urbanisation raises ground water
demand which makes extraction rate is twice higher than
the recharge rate [29]. Around 70% of the water supply of
Mexico City comes from aquifers [30]. Ground water over-
exploitation generates compression of the aquifer system,
leading to land subsidence [31, 32]. The maximum subsidence
velocity reached up to 40 cm/yr [12]. Mexico City subsidence
provides thus an interesting testing ground for MT-InSAR
approaches.

We investigate two stacks of 5 and 15 images corresponding
to a 2-month and a 6-month Sentinel-1 SLC datasets, which
are acquired in descending orbit over the period from July
3rd, 2019 to August 20th, 2019 and to December 18th, 2019,
respectively. These images are 12 days apart and cover ap-
proximately 14× 22 km2 around the Mexico City.

Before applying any MLE-PL approaches, we co-registered
our dataset with reference to the first date (Jul 3, 2019),
then, topographic and orbital fringes are removed using SNAP
software5. The next step is to use our proposed approaches
to estimate wrapped phase differences (referred to the first
date) from the full covariance of SAR image time series.
For this experiment, we will focus on the improvement of
the estimation of wrapped phase differences compared to the
state-of-the-art PL approaches (i.e., the problem of retrieving
the subsidence rate of the Mexico City from those phase-
differences is out of the scope of this paper).

B. Real data results

In both scenerios of short and longer time series, only the
longest temporal baseline interferograms are shown here with
the objective to highlight the performance of the proposed
approaches against the temporal decorrelation; the latter is one
of the most important factors that degrade the quality of the
phase difference estimation. Multi-looking window size is the
same in all cases with L = 8×8 pixels. For LR structures, the
rank R is fixed to be 1 for all algorithms. The choice of R is
based on the analysis of eigenvalues of the sample covariance
matrix of the whole dataset (Fig. 2). According to Fig. 2, the
first eigenvalue is sufficiently informative. In addition, a test
of different rank values has also been performed to confirm
the choice of R = 1.

Fig. 8 shows the longest temporal baseline interferogram
(Jul 3, 2019 - Aug 20, 2019) estimated by PL, GPL and SGPL
in case of N = 5 and L = 64 pixels with a full-rank and a low-
rank model. A slight improvement in terms of noise reduction
obtained with SGPLLR compared to PLLR can be observed in
a zoom area on the top line of Fig. 10.

Similar to the synthetic simulations, since the time series
is small (longest time span is 48 days), the impact of the
temporal decorrelation is small, the performances of PL, GPL
and SGPL are similar.

5http://step.esa.int
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Fig. 4: Top row: histograms of phase estimators at date 2 for N = 5, L = 6. Bottom row: corresponding evolution of the MSEs
on the estimation of the phase vector element θ2 w.r.t. increasing L. From left to right column, the underlying distribution
goes from Gaussian to heavy-tailed (i.e., K-distribution with ν = 1 in the center, and ν = 0.1 on the right).

Fig. 5: Corresponding MSEs on {θ2, θ4, θ7} with respect to increasing L (also from left to right column respectively). These
figures display the results for an underlying Gaussian model, while the heavy-tailed case is in Fig. 6.

Fig. 6: Corresponding MSEs on {θ2, θ4, θ7} with respect to increasing L (also from left to right column respectively). These
figures display the results for an underlying K-distribution with ν = 1, while the Gaussian case is in Fig. 5.

In case of longer time series (Fig. 9), the improvement
in terms of noise reduction is more pronounced with the
scaled Gaussian model and the LR structure. The benefit of
scaled Gaussian model is particularly highlighted when we
compare the interferogram obtained with PLLR (right top)
to that obtained with SGPLLR (right bottom). Indeed, with
a longer temporal dataset, it is crucial to use the LR model to
reduce the multi-looking window size (remind that the multi-

looking window size should be increased with the time series
size in order to guarantee the performance of the covariance
matrix estimation). To further showcase the performance of the
SGPL approach, Fig. 10 shows a zoom of a focused area for
a comparison between PLLR and SGPLLR in cases of N = 5
and N = 15. A significant noise reduction is obtained with
SGPL, especially with N = 15, which confirms the interest
of the SGPL approach.
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Fig. 7: MSEs on θ2 with respect to L for SGPLLR using
different ranks R. K-distribution with ν = 1, N = 15.

VII. CONCLUSIONS

In this work, novel robust-phase-linking algorithms are pro-
posed to estimate wrapped interferometric phases with respect
to a common date. Generalizing from the standard MLE-PL
approaches, the proposed method relies on the consideration of
scaled Gaussian statistics and the utilization of a LR structure
of the covariance matrix. From this model, we derived an
algorithm to compute the corresponding maximum likelihood
estimator, which does not rely on plug-in estimates of the
coherence. Simulations and applications to real data show the
interest of considering this model: scaled Gaussian models
allow for a significant gain in terms of noise reduction on
wrapped interferograms, while the LR structure allows for
reducing the number of needed samples with respect to the
length of the image stack. Future works will investigate a
streaming implementation of the proposed method, which will
allow reducing the computational cost when processing large
time series and integrating timely new images that arrive over
time.
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[17] Gordana Drašković, Arnaud Breloy, and Frédéric Pascal, “On the
asymptotics of maronna’s robust PCA,” IEEE Transactions on Signal
Processing, vol. 67, no. 19, pp. 4964–4975, 2019.

[18] Walter Rudin, Real and Complex Analysis, 3rd Ed., McGraw-Hill, Inc.,
1987.

[19] Walter Appel and Emmanuel Kowalski, Mathematics for physics and
physicists, vol. 47, Princeton University Press Princeton, NJ, 2007.

[20] Simon Zwieback, Xingyu Liu, Sofia Antonova, Birgit Heim, Annett
Bartsch, Julia Boike, and Irena Hajnsek, “A statistical test of phase
closure to detect influences on DInSAR deformation estimates besides
displacements and decorrelation noise: Two case studies in high-latitude
regions,” IEEE Transactions on Geoscience and Remote Sensing, vol.
54, no. 9, pp. 5588–5601, 2016.

[21] Homa Ansari, Francesco De Zan, and Alessandro Parizzi, “Study of
systematic bias in measuring surface deformation with SAR interferom-
etry,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59,
no. 2, pp. 1285–1301, 2020.

[22] Homa Ansari, Francesco De Zan, and Alessandro Parizzi, “Fading sig-
nal: An overlooked error source for distributed scatterer interferometry,”
in 2021 IEEE International Geoscience and Remote Sensing Symposium
IGARSS. IEEE, 2021, pp. 3181–3184.

[23] Francesco Falabella and Antonio Pepe, “On the phase nonclosure of
multilook SAR interferogram triplets,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 60, pp. 1–17, 2022.

[24] Yujie Zheng, Heresh Fattahi, Piyush Agram, Mark Simons, and Paul
Rosen, “On closure phase and systematic bias in multilooked SAR
interferometry,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 60, pp. 1–11, 2022.

[25] Yasser Maghsoudi, Andrew J Hooper, Tim J Wright, Milan Lazecky,
and Homa Ansari, “Characterizing and correcting phase biases in short-
term, multilooked interferograms,” Remote Sensing of Environment, vol.
275, pp. 113022, 2022.

[26] Meisam Razaviyayn, Mingyi Hong, and Zhi-Quan Luo, “A Unified
Convergence Analysis of Block Successive Minimization Methods for



10

Fig. 8: The longest temporal baseline interferogram (Jul 3, 2019 - Aug 20, 2019) estimated by PL, GPL and SGPL (from top
to bottom) in case of N = 5 and L = 64 pixels with a full-rank model (left) and a low-rank model (right)

Fig. 9: The longest temporal baseline interferogram (Jul 3, 2019 - Dec 18, 2019) estimated by PL, GPL and SGPL (from top
to bottom) in case of N = 15 and L = 64 pixels with a full-rank model (left) and a low-rank model (right)

Nonsmooth Optimization,” SIAM on Optimization, vol. 23, no. 2, pp.
1126–1153, 2013.

[27] David R Hunter and Kenneth Lange, “A tutorial on MM algorithms,”

The American Statistician, vol. 58, no. 1, pp. 30–37, 2004.
[28] Ying Sun, Prabhu Babu, and Daniel P. Palomar, “Majorization-

minimization algorithms in signal processing, communications, and



11

Fig. 10: A focused view for a comparison between PLLR (left column) and SGPLLR (right column) in both cases N = 5 (top
row) and N = 15 (bottom row).

machine learning,” IEEE Transactions on Signal Processing, vol. 65,
no. 3, pp. 794–816, 2016.

[29] Cecilia Tortajada, “Challenges and realities of water management of
megacities: The case of Mexico City Metropolitan Area,” Journal of
International Affairs, vol. 61, no. 2, pp. 147–166, 2008.

[30] Cecilia Tortajada, “Water Management in Mexico City Metropolitan
Area,” International Journal of Water Resources Development, vol. 22,
no. 2, pp. 353–376, 2006.

[31] Penélope López-Quiroz, Marie-Pierre Doin, Florence Tupin, Pierre
Briole, and Jean-Marie Nicolas, “Time series analysis of Mexico City
subsidence constrained by radar interferometry,” Journal of Applied
Geophysics, vol. 69, no. 1, pp. 1–15, 2009, Advances in SAR Interfer-
ometry from the 2007 Fringe Workshop.

[32] Estelle Chaussard, Shimon Wdowinski, Enrique Cabral-Cano, and Falk
Amelung, “Land subsidence in central Mexico detected by ALOS
InSAR time-series,” Remote Sensing of Environment, vol. 140, pp. 94–
106, 2014.


