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Abstract

The detection of multiple targets in an enclosed scene, from its outside, is
a challenging topic of research addressed by Through-the-Wall Radar Imag-
ing (TWRI). Traditionally, TWRI methods operate in two steps: first the
removal of wall clutter then followed by the recovery of targets positions. Re-
cent approaches manage in parallel the processing of the wall and targets via
low rank plus sparse matrix decomposition and obtain better performances.
In this paper, we reformulate this precisely via a RPCA-type problem, where
the sparse vector appears in a Kronecker product. We extend this approach
by adding a robust distance with flexible structure to handle heterogeneous
noise and outliers, which may appear in TWRI measurements. The resolu-
tion is achieved via the Alternating Direction Method of Multipliers (ADMM)
and variable splitting to decouple the constraints. The removal of the front
wall is achieved via a closed-form proximal evaluation and the recovery of
targets is possible via a tailored Majorization-Minimization (MM) step. The
analysis and validation of our method is carried out using Finite-Difference
Time-Domain (FDTD) simulated data, which show the advantage of our
method in detection performance over complex scenarios.

Keywords: Through-the-Wall Radar Imaging, RPCA, Huber distance,
Majorization-Minimization, ADMM, variable splitting

*Corresponding author
Email address: hugo.brehier@centralesupelec.fr (Hugo Brehier)

Preprint submitted to Signal Processing October 26, 2023



1. Introduction

Through the Wall Radar Imaging is a current topic of research (see e.g.
[1] for a comprehensive review) that aims at detecting targets in an enclosed
scene from its outside via radar measurements, the scene being unobservable
to the naked eye. It makes use of the penetrative properties of electromag-
netic waves to obtain returns from the inside of the scene while having to
filter the front wall echoes. The ability to observe scenes though wall or other
similar types of obstacle would be a useful technique for military operations,
civilian rescue operations and monitoring [2, 3]. Many problems appear in
the context of TWRI. Firstly, the front wall (facing the radar) returns are
overwhelming and obscure the enclosed scene. Secondly, the echoes from the
enclosed scene are subject to different phenomena: clutter from the inner
walls gets mixed with the target echoes. Moreover, those returns can travel
across different paths, so-called multipaths, which may create ghost targets.

Past works have focused on different aspects of the topic of TWRI such
as localisation of targets, change detection, movement characterization [4, 5,
6, 7]. Here, we focus on the localisation of stationary targets which can be
readily extended to moving targets by collecting measurement over time and
applying the same methodology. We will focus on a 2D scenario which ne-
cessitates the use of multiple antennas (or a single travelling one) to achieve
a sufficient resolution. A standard hypothesis in TWRI is for the wall to
be homogeneous, with permittivity and thickness considered to be known,
or to be estimated in a previous step [8, 9]. Other works have developed
methods for the unknown case based on focusing techniques [10, 11|. In an
earlier phase of TWRI, some methods [12, 13] were developed that use Syn-
thetic Aperture Radar (SAR) techniques [14] such as Back-Projection (BP).
Those methods require the acquisition of measurements from an empty scene
to remove the front wall. Subsequently, two-step techniques were developed
[15] which consist in: a) filtering the front wall echoes based on subspace
decomposition [16, 17, 18] b) recovering the target positions, based on the
hypothesis of sparsity of the targets w.r.t. the scene dimensions, with the
possible use of Compressive Sensing methods to reduce computation times
[19]. This approach requires the use of a dictionary to map the returns onto
a grid covering the scene. This formalism also allows handling multipaths or
front wall reflections more precisely [20]. Building on this, one-step meth-
ods have been explored during the past years via the framework of Robust
Principal Component Analysis (RPCA) |21, 22, 23] which allows the joint



decomposition of a matrix in two separate components: one being low rank
and the other being sparse, the two parts capturing respectively the returns
of the front wall and the returns of the targets. Such one-step methods
have been shown to perform better than their counterparts in several radar
experiments (24, 25, 26, 27, 28|.

We build upon these more recent approaches and address some of their
limitations in the context of TWRI. A question to be raised is the robustness
of those methods in the case that the measurements do not respect the model
perfectly. Indeed, the returns from the front wall may not be homogeneous
as supposed: the structure of drywall may for example create a discrepancy
of the returns power among the different radar positions. Moreover, the
permittivity of the wall that is supposed to be frequency-independent may
be too restrictive and its treatment may lead to better performances. This
has motivated us to inspect the addition of a robust distance [29] with flexible
structure to one-step matrix decomposition methods applied to TWRI.

To do so, we first formalize the TWRI problem in the context of RPCA,
which leads to the sparse component appearing in a Kronecker product, a
special case of the model in [23]. We make adjustments to previous work
in TWRI by using the ADMM framework [30]. This first part concluded
with the presentation of a method, we then introduce the use of a robust
distance with a flexible structure. This allows us to handle heterogeneous
noise or outliers in the data closeness term, which may distort the results
grossly with the usual euclidian distance. This was suggested in [31] but not
developed. We present two methods for the resolution of this problem which
make use of ADMM in tandem with variable splitting and either Proximal
Gradient Descent (PGD) or MM frameworks.

The following sections of the paper are organized as follows. Section 2
presents a standard model for the measurements and describes existing two-
step and one-step methods for TWRI. In Section 3, we introduce and develop
the robust extension to one-step methods. Section 4 follows with experiments
done on simulated data to compare the performance of the different methods.
Finally, Section 5 summarizes the advantages of our method and perspectives
of future work.
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Figure 1: 2D Through the Wall setting (view from above)
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Figure 2: Multipath propagation via reflection at an interior wall (left) and via reverber-
ation i.e. "wall ringing" (right)

2. Existing TWRI models and methods

2.1. Setting and signal model

We first present a signal model widely used in the TWRI literature |15,
25]. Consider a 2D scene, as in Figure 1, with homogeneous wall of thickness
d and permittivity e located along the x-axis. We obtain N measurements
over a synthetic array parallel to the wall at a standoff distance z,¢f, with a
stepped-frequency radar signal of M frequencies uniformly spaced over some
frequency band [wy,wp/] so that: wy, = w) +mAw, m=1,..., M with Aw
the frequency step. Measurements are in a stop-and-go setting.

The noiseless received signal can be written as the superposition of the
returns from the front-wall and targets. This leaves out from the model
echoes stemming from the inner walls which may form clutter in real-world



scenarios. For the m!'" frequency and n'* position, we have:

K R P
y(m,n) = o exp (—jwnt) + D D ol exp(—jwnt)) (1)
k=1 i=1 p=1
where P is the number of point targets in the scene, considered to be low
w.r.t. the scene dimensions, K is the number of reverberations in the front
wall, while R is the number of possible multipaths, as the propagation
through the front wall and the lateral/back walls induce several possible
paths as presented in Figure 2.

Moreover, o is a complex-valued attenuation coefficient comprising the

reflectivity of the wall and the path loss for the &' wall reverberation, P
is the round trip propagation delay from transceiver to wall.

Additionally, 01(,2) is a complex-valued attenuation coefficient which fac-
tors in the different losses for the i'® multipath to the p!" target: the wall
refraction loss, path loss in air and wall, and target reflection loss. The two-
way propagation delay from n'* transceiver to the p™ target along the i
multipath is denoted T]Sf,)l. The direct trajectory through the front wall can
be computed by numerical methods as in [32], which allows us to evaluate
the associated propagation delay.

For numerical evaluation and implementation, we discretize the scene into
a %rid of dimension N, x N, in crossrange vs downrange. We now denote
ﬂ%nzm the propagation delay to the (n,,n.)" pixel for the i multipath
scheme and the n** transceiver position. Then, we can write the received
signal through a dictionary ¥ which maps the whole scene. For the i** mul-
tipath scheme and the n'* transceiver position, its (n,, n. )™ column describes
the return from a point target at the (n,,n.)" pixel:

[ ). = [exp (—jwors. ) - exp (—jwar—a i, )] (2)
Then, ¥, € CM*NaN:=E jg the part of the overall dictionary mapping from
received signal to target positions from the n'* transceiver position. This
allows to write in vector form the signal received at the n'* position:
r®
r®




where 1, € CM contains the returns of the front wall and r® € CN="= g
the scene vector associated to the i** multipath propagation scheme contain-
ing the back-scattered signal complex amplitudes over the grid covering the
scene.

In this setting, the returns of the front wall are overwhelming. It is needed
to filter them out in order to achieve the detection of targets. The most con-
venient and common technique is to separate the target and wall subspaces
to mitigate the contribution to the measurements of the wall. Indeed, the
radar displacement axis being chosen to be parallel to the front wall induces
an invariance of the front wall returns along the different measurement po-
sitions. Coupled with their higher power compared with the scene behind,
this calls for the use of a subspace decomposition. The filtering of the front
wall followed by the detection of targets can be stated as a two-step method
which we detail in the next section.

2.2. SR-CS: vectorized overall model and two-step methods

The method of Amin and Ahmad [15], which we denote SR-CS (for Sparse
Recovery - Compressed Sensing) considers a vectorized model where the total
signal model is created by stacking the measurements at the IV radar positions

in a long composite vector.
Indeed, let y = [y?...y%]" and ¥4 2 [T .. ®L]7 so that:

y =M, I§]" + @ar (4)

SR-CS assumes that the front wall returns have been suppressed (see e.g.
[17, 18]) so that 1, =0Vn =1,2...,N and y = Wur.

Assuming that the number of targets is relatively low w.r.t. the scene
dimensions, the vector of amplitudes r is sparse. The recovery of r with a
sparsity regularization consists in a renowned problem of sparse recovery, the
most famous example being the LASSO regression [33|, which uses a ¢; norm
regularization. The use of the ¢;; norm, a regularization used in order to
promote grouped sparsity across rows [34], has been developed for multipath
exploitation in [20]. It is defined as the sum of the euclidian norm of the
rows of a matrix. Indeed, in our case, rows represent one pixel viewed across
different multipaths, we then want our method to promote activation of whole
rows, as the underlying scene is the same across multipaths. This can filter
out multipath ghosts which appear at some position in an unstructured way,
i.e. not across all multipaths, on the contrary of true targets.



2.3. KRPCA: matricized overall model and one-step methods

2.8.1. Data Model

The approach in Section 2 is a sequential method in two steps : a) filter
the front wall, b) recover the target positions. Recent works [25, 28] suggest
that a parallel recovery of both components can improve performances.

This can be considered through a decomposition of the data matrix, more
precisely low rank plus sparse decomposition methods. This was notably
developed in the framework of Robust PCA (RPCA) |21, 22] whose goal is
to retrieve a low-dimensional subspace in which lie the data points, except for
some outliers which are accounted for in a sparse matrix. It makes use of the
/1 and nuclear norms for convex relaxation, known to be the convex envelopes
of the ¢y ‘norm’ (the number of non-zeros entries) and rank of a (bounded)
matrix [35]. In [23], it was extended to a setting with a compressing operator
acting on the sparse component. However, we may observe that our model is
a special case of the aforementioned method. Indeed, note that we can write
an overall matricized model for the observations:

o ... 0
0
yi-o.yn =L In]+ [P, Oy
=Y =L =¥ (5>
0 0O r
=I;vr®r

— Y=L+¥(Iy®r)

with ® denoting the Kronecker product. Y € CM*¥ the data matrix, L €
CM*N g low-rank matrix of front wall returns, ¥ € CM*NeN=EN g dictionary
mapping to the target returns and S € CNeN=BNXN the associated sparse
matrix containing the scene vector.

2.3.2. Problem statement

Some works of low-rank plus sparse matrix decomposition exist in the
context of TWRI [24, 25|. Additionally, the work of [28|, denoted KRPCA
(for Kronecker-structured RPCA), proposed the following formulation to re-
fine the model of [23]:

. -1
min [T, + Afjvec™ (v)]],,

(6)
st. Y=L4+¥(Iy®r)
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In the following, we define R = vec™!(r) for ease of notation with vec™!(r) £
[r@r®  pE-D] ¢ CNeNaxB g0 that vec ! (vec(R)) = R.

The resolution of KRPCA can be tackled via the Alternating Direction
Method of Multipliers (ADMM) [30]. The Augmented Lagrangian associated
to (6) is:

UL,x,U) = L], + AIR]l,, + R (U.Y ~ L~ ¥(Iy 1))

p (7)
Y L - w(y )}
where U is the matrix of Lagrange multipliers, A is the sparsity regularization
parameter and p is the augmented Lagrangian penalty parameter.
The resolution for the three variables can be summarized as:

e The subproblem for L is obtained via the soft thresholding operator on
singular values, that is the proximal (see e.g. [36] for a comprehensive
review) of the nuclear norm (with threshold \), denoted D). It thus
consists of the so-called ¢;-norm proximal,the soft-thresholding opera-
tor Sy, applied on the singular values of a matrix. Recall that S is
defined element by element as: [Sx(A)];; = sgn(a;;) (|a| — A), where
sgn(z) = x/|z| if x # 0, else sgn(x) = 0 for z € C is the complex
sign function and (z); = max(z,0) for z € R. Also recall the Singular

Value Decomposition (SVD) denoted by A YD yxvH , so that:

Di(A) =US\(Z)V" (8)

e The subproblem for r is not solvable via a similar proximal evaluation.
However, we may use proximal gradient descent (PGD) [36] since the
objective function of this step is a sum of two convex terms with one
being non-smooth. We can use a fixed step-size which is readily com-
puted via the Hessian of the derivable part of the objective function.
The proximal operator of ¢5;-norm (with threshold \), denoted T},
operating row by row over A, is defined for the i'* row A;. as:

A= (1- 12 A o)

In fact, it is the proximal of the classical fo-norm applied on a given
row, as proximals are separable over sums.

8



e Finally, the subproblem for U is a standard ADMM step of dual ascent.
The interesting point is that the step-size is already known: it is the
parameter of the Augmented Lagrangian.

The method is summarized in Algorithm 1.

Algorithm 1 Algorithm for KRPCA

10:
11:
12:
13:
14:
15:
16:
17:
18:

Have: {y;}), { Wi},
Choose: A, i

Y £ Y1, ¥y2,---yn]
U2 U, . . Uy
v, 2 [wlel el
P=v,"U,

t =1/ Amax(uP)
Initialize: L, R, U

repeat
L=D,(Y—-¥(Iy®r)+p'U)
r=L-Y-u'U
n=w,%vecl
repeat:
R = T\(vec ! (r — tp(n + Pr)))
r = vec (R)
until stopping criterion is met
U=U+pu(Y-L-Y(Iy®r))
until stopping criterion is met

2.3.3. Convergence analysis

The convergence of the algorithm is assured by the theory surrounding

ADMM. In our case, both functions in the objective functions are proper
closed convex functions. Assuming the (non-augmented) Lagrangian has a
saddle-point, this ADMM algorithm for KRPCA guarantees residual conver-
gence, objective convergence and dual convergence [30].

2.8.4. Computational complexity

The computational complexity of the derived algorithm for KRPCA is

dependant on some assumptions on the order of the dimensions considered.
Assume that MN > D > M > N where D = N, N, R is the discretized scene

9



grid size for all multipaths (and recall that M, N are respectively the number
of frequencies and radar snapshots). Under those assumptions, the major cost
of the overall algorithm is the computation of P during the initialization,
which is of complexity O(M N D?). In the case of repeated calls of KRPCA
(e.g. for Monte Carlo simulations), we can look only at the cost of the inner
loop, considering P as cached. Denoting that ¥(Iy ®r) = vec ! (¥ 41), this
operation can be seen to be of complexity O(MND). The PGD step has
complexity O(K D?). We assume that K = 1 or relatively small, which is
respectable in practice, otherwise the ordering of the different dimensions
becomes too tight to make general statements. We then conclude that the
inner loop has complexity O(M N D).

3. HKRPCA : handling outliers via a robust distance in low-rank
plus sparse decomposition methods

The performance of KRPCA and other methods using a least squares data
closeness term is susceptible to heterogeneous noise or outliers that may well
appear in the context of TWRI. Indeed, as described in [37], most radar
clutter types can be described as heterogeneous. For example, in the con-
text of TWRI, a drywall will not have homogeneous returns in power across
measurement positions. Moreover, the wall characteristics (permittivity and
conductivity) may be dependant on frequency i.e. the wall is dispersive [1].

3.1. Problem statement

In order to alleviate the potential problems in estimation caused by het-
erogeneous noise or outliers, we set out to include a robust distance [38] in
our problem formulation to model the data closeness.

This leads us to define the following optimization problem, which we call
HKRPCA (for Huber-type KRPCA):

. 2
min LI, + AR, + 5 > H[Y = L — ¥(Iy ® vec(R))],,

piEP

r) (10)

with P a partition of the entries of the residual matrix with i** element p;
and H. the renowned Huber loss function Huber [29] with threshold ¢ € R,
defined Vz € R as:

H(2) = {%xQ if 2] <c (11)

c(|z| = to) if x| > ¢

10



The rationale behind such a function is that outliers are higher contributors
to the data closeness term than other points. Having a linear term in the loss
specifically for them will lower their influence while the inliers will contribute
to the loss via a quadratic term, similarly to classical least squares.

The flexible block-wise partition of entries allows us to model the outliers
shape as we see fit. For example, if the wall materials are structured rather
than homogeneous, the noise power may be variable by radar position, which
induces a column-wise heterogeneity that can be taken into account in a
column-wise partition.

3.2. ADMM algorithm with a semi-split of variables

Handling the problem (10) directly can be achieved by proximal gradient
descent alternated on the two variables. However, a strategy to obtain closed
form updates is to introduce auxiliary variables to decouple the terms of the
objective function. We introduce one auxiliary variable M = L to decouple
the nuclear norm from the Huber cost. We will see later that the split of r
does not yield a similar proximal closed form. We consider the problem:

- 7
min M, + AR],, + 5 > HI[Y =L — ¥(Iy ® vee(R))], || )

LR.M
piEP

st. M=L
(12)

This semi-splitting problem (12) can be tackled through the ADMM
framework. The Augmented Lagrangian associated with (12) is:

14
(L, R, M, U) = [M], + AR, + % (UM~ L) + M~ L%
12
HEST Y T W(Iy @ veeR)) )
p;EP

As for KRPCA, the following subsections will detail the update of each
variables for minimizing {(L, R, M, U).

(13)

3.2.1. L-update
For this variable, the minimization consists in finding:

2
14

1
M-L+-U
2 v

arg min g Z H ([Y =L - ¥(Iy ® vec(R))lp, ) +
L
piEP

11



The resulting update solving for (14) is given in the following proposition.

Proposition 1. The solution is Vp; € P :

1
[L]p; = prozy, o0 .o, ([M + ;U -Y+¥(Iy® Vec(R))]pi) (15)

+[Y — ¥ (Iy ® vec(R))],,
with the proximal defined in the proof below (equations (18) and (19)).
Proof. The problem (14) is separable in the blocks {[L],,}:

min 53" H([Y - L - ¥(Iy ® vee(R))],, )
(L} 2
) L (16)
+§ Z [M_L+;U]Pi
pi€P F

By the separability property of proximals [36], we can consider the proximal
over each block separately:

2

min - SH(|[Y - L — ®(Iy @ vee(R))],, (17)
Ly, 2 F

We then compute the proximal of f(X) = H.(||X + B|| ) with B a constant
term. The proximal of the Huber function has a known form [39]:

prosun o) = (1 - TR 5)* (18)

We can then leverage a theorem of norm composition [39] to get:

X .
prox,p, ([1X| ) - X[ - if X#0 (19)

0 it X =0

v 1
D+ g[M-re o,

PrOX o), (X) = {

We finally use the translation properties of proximal operators, so that, Vp; €
P, the update is:

1
[L]p: = ProX (o) a.of <[M +oU-Y +¥(1Iyv® VeC(R))]pi) (20)

+ Y — ¥(Iy ® vec(R))],,
n

This gives a closed-form update for the L-step. We will see later that the
auxiliary variable M as well as the dual variable U also have closed-forms.

12



3.2.2. R-update: via PGD
The minimization problem over R is:

o
min - 3 > HAIY = L — ®(Ly @ vec(R))],ll ) + AR, (21)
pi€EP

It is possible to use proximal gradient descent (PGD) for the minimization
over this variable. We will consider the vectorized variable r to compute the
gradient and unvectorize the solution to apply the proximal. At iteration
t + 1, with step-size s, we have :

Rt+1 = T)\s (VGC_1 (rt — Sggt>> (22)

where T" is the row thresholding operator i.e. the proximal of the ¢5; norm
(see Equation (9)) and g is the needed gradient of the sum of Huber functions.

Proposition 2. The gradient g w.r.t. r is:

g=- Y % S (B ()Y (23)

E|..
pi€EP 1| F (49,k)epi

where E=Y — L —¥(Iy ®@r) and (¥,);. denotes the j' line of ¥y.

Proof. The gradient is computed accordingly to Wirtinger calculus, since we
have an objective function of complex variables. Gradient descent in this
setting is achieved with:

d
dr*

g=2 (Z He(([[Y = L = ¥(Iy @ )], F)> (24)

Using the chain rule, we get:

g =20 3 HL([E),

piEP piEP

Hé Epi F d 2
=3 T EL )

with the derivative of H. being:

H! () x if 2] <c¢ (26)
xr) =
¢ csgn(x) if x| > ¢

13



where sgn denotes the sign function. Finally, we compute:

LB = Y ¥k — [l — ()
(4,k)€pi (27)
= > —([Y]ik — [Tk — (Zr)jr) (1)1,
(4:k)€p;

where (®); r is a scalar as (¥,);. denotes the j' line of W;. Then:

== %jpﬂ > EL(E)] (28)

F (4,k)€EPi

]

The step-size can be found by backtracking line-search (via Armijo’s rule)
which consists in iteratively shrinking an initialy large step-size until suffi-
cient decrease has been achieved. In practice,the step-size does not vary over
iterations so that it can be fixed to one precomputed value (linked to the
Lipschitz constant of the gradient above).

The gradient g may be compactly written for faster implementation:

g = — ¥, bdiag(eg)hy = —¥y(e; © (hy ® 1)) (29)
where 1 is a vector of ones and ® denotes the Hadamard product. The oper-
ator bdiag assigns a block diagonal matrix to a composite vector, ¥, collects
the dictionary vectors in the innermost sum, e, the associated residues, and
h, the fraction of norms in the outermost sum. Note that e; ® (h; ® 1) is

faster to compute than bdiag(e,)h, as it avoids summing over the zeros of
the block-diagonal matrix.

3.2.3. M-update

Thanks to the variable split, the update M appears as a classical proximal
problem with closed form solution. Indeed, after completing the squared
norm, the problem of solving (13) over M consists in finding:

12
arg min ||M||*—|—ZHM—L+—U (30)
M 2 vollr
which is a proximal of the nuclear norm. Thus :
1
M = Dl/z/(L - _U) (31>
v

where D is the singular value thresholding operator (see Equation (8)) .

14



3.2.4. U-update

Finally, the U update is a standard step of ADMM, the dual ascent step:
U=U+v(M-L) (32)

The method is summarized in Algorithm 2.

Algorithm 2 Algorithm for HKRPCA (semi variable splitting)

10:

11:

12:
13:
14:
15:
16:

Have: {y; i]ila{q’i}i\;l
Choose: A, u,v,n,c,t and P
Y £ [y, y2,...yn]

U E W, U, ... Uy

v, 2 whel | wl)T
Initialize: L, R, M, U

repeat:
[Llp: = ProxX(, o) m.of |, (M+1U-Y + ¥(Iy @ vec(R))],,)
+[Y —¥(Iy ®@vec(R))],, Vpi€eP
repeat:
E=Y -L - ¥(Iy®vec(R))

_ He(|[ [y, || )
G = —vec! (Zmep W (Z(j,k)epi [E]Jk(‘I’k)JH>)

F
R =T (R — S%G)
until stopping criterion is met
M = Dy, (L - 1U)
U=U+v(M—-L)
until stopping criterion is met

3.3. ADMM algorithm with full variable splitting

The update for r via PGD is not the only option, we may avoid the

use of an unknown step-size tuned via linesearch by splitting the variable
similarly to L to decouple the terms in appears in. If we take this route, the
formulation is:

. 2
L [IMIL - AIS 5+ 5 > H|IY — L - ¥(Iy @ vec(R))],, Il
PiEP
st. M=L, S=R
(33)

15



This full variable splitting problem (33) can be tackled through the ADMM
framework. The Augmented Lagrangian associated with (33) is:

v
(L, R,M,S,U, V) = [M], + AlIS[l,, % {U,M — L) + oM — L[5
n 2
+R(V.S—R)+1[S - RIS (34)

+5 30 HAIY — L - ¥(Ly @ vee(R))] | )

piEP

3.3.1. L, M, U-updates
The L, M and U updates do not change from the semi variable splitting
method. Indeed, the major difference is in the r update.

3.3.2. R-update via MM
The objective function is in this case:

min 53" H(|[Y - L - ¥(Ly ® vee(R))],,

pi€EP

i 1
—IS—R+ -V
FH?H T

F
(35)

Via decoupling, we cannot find a similar closed-form proximal evaluation
for r as for L in Proposition 1. Indeed, the sum of Huber functions is not
separable over r. Instead, we will show that the Majorization-Minimization
(MM) framework [40] gives us a way to solve for this subproblem iteratively.
The MM framework consists in finding a local majorizing surrogate, mini-
mizing it and iterating those steps.

Proposition 3. A MM scheme can be tailored which converges to a critical
point of (35), with iteration t + 1:

-1
i1 = (g‘l’gw(rt)‘l’AW(rt) + 771) X

(g\llfw(rt)(vec Yw,) — vec Ly ,)) + (nvecS + vec V))

(36)

with W depending on r;, which we drop from mnotations below. We have
Ly =WoOL, Yy =WoY, Uy =vec(W)1T O W, and W is defined by
(W1, = wi(r;) where the (j, k)™ entry is in the i'" patch, with w}(r;) = 1 if
ei(ry) < c or else w?(ry) = G where ei(ry) = [[[Y =L — Iy @ 1)y, [ o

ei(rt

16



Proof. Consider the vectorized variable r whose update we can unvectorize
for R. The first step is to find a majorizing function of H.(z) at some point
x; that we will denote G.(z|x;). It must be equal to H. at the point z; and
greater at all other points. We can use the result from [41, Theorem 4.5] :

Ge(z|z) = = (2% — 02) + Ho(my) (37)

This is the sharpest quadratic majorizer. We can obtain:

1,2 if |z < ¢
” 3 = 38
($|xt> {%LZLQ + %C(|$t| — C) if |xt| >c ( )

It‘
Note Vp; € P that e;(r) = [|[[Y =L — ¥(Iy ®@r)l,|, and e;(r;) is the
same quantity but with r;, the variable at the previous MM iteration.
By the definition of GG just above, we can write:

arg min G, (e;(r)|e;(r;)) = argrmin %w?(rt)e?(r) (39)

r

where w?(r;) = 1 if ¢;(r;) < ¢ or else w?(r;) = - Also note that we can
sum the majorizers over all blocks to get a global one. Then, it follows that
by adding the remaining quadratic term of the objective function, we get the
following majorizer at point r; to the objective function (35) :

2

1
r— (vecS + —vecV)

; (40)

Ge(r|ry) = ZG ei(r)|ei(ry)) +

p2 cP

F
So that, via the MM framework, we are left with finding:

r; 1 =argminG.(r|r;)
r

= arg min % Z w?(ry)ei(r) + g

r

2

1
r— (vecS + —vecV)
n F

Mpiep (41)
= arg min ZHW O(Y -L-¥(Iyor);

r
2

1
r— (vecS + —vecV)

n
+_
2 n

F
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where W is such that [W];;x = w;(r;) where the (j, k)" entry is in the ™"
patch. To find the minimizer in (41), we vectorize the first term since the
Frobenius norm acts component-wise. Then:

ryp = arg min %”‘IJAWI‘ — (vec Yy — vec L)%

2 (42)

1
r — (vecS + —vec V)

Ui
+2 o

F

where Ly = WO L, Yy = WOY and ¥,y = vec(W)1T © ¥ 4. Via the
first order optimality conditions, we get:

1

,% (43)
(§‘I’ZW(“)(V€C Yw,) — vec Ly ,)) + (nvecS + vec V))
O
Finally, the S,V updates are found in closed form.
3.3.83. S-update
The update for S can be expressed as:
min AM[,, + 2|ls - R+ v 2 (44)
S ) n g
whose solution is a proximal of the /5 -norm:
1
S=Ty,(R - V) (45)
where T' is the row thresholding operator.
3.3.4. V-update
The V-update is a generic ADMM step of dual ascent:
V=V+nS-R). (46)

Moreover, the dual balancing scheme [30] to adapt the dual hyper-parameters
proved useful in practice. The method is summarized in Algorithm 3.
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Algorithm 3 Algorithm for HKRPCA (full variable splitting)

Have: {y:}iL;, {®:}L,
Choose: A, i, v,n,c and P

Y £ Y1, ¥y2,---yn]
VLW, U, ... Uy

U, 2 whel | wl)T
Initialize: L,R,M,S, U, V, W

repeat:

[L]pl = prOX(H/2V)HcOH'”F ([M + %U -Y + \II(IN X VeC(R))]pi)

+[Y —¥(Iy ®vec(R))],, Vpi€eP
9: repeat:
10: E=Y -L - ¥(Iy®vec(R))
Ik (W= Lit [[[E], || < celse \/e/ [[Ely ]l V(5 k) € pi
12: Wiy = VGC(W) 17 O WPy
—1

13: Wawr = (%‘I’IZW\I’AW —l—T]I)
14: r=Wayrs (%‘Illjw(vecYW —vec Ly ) + %Vec S + vec V>
15: until stopping criterion is met
16: M = D, (L - 1U)
17: S =T\mR — %V)
18: U=U+v(M-L)
19: V=V+7nS—-R)
20: until stopping criterion is met

3.4. Convergence analysis
3.4.1. Semu-splitting algorithm
We consider the semi-splitting algorithm for HKRPCA, which we can
write in the following equivalent formulation to (12):
Juin M, AR, 5 D Ho([S,(~vee Y 4 veeL + aveeR)]| )
p;EP
vec L

vec R} = Ouy

S.t. vec M — [IMNaoMNXNINZR} |:
(47)

where S, denotes the selection matrix associated to the i*" block, which has
a unique or no unit entry in each column/row and zeros elsewhere. 0y n
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denotes a matrix of zeros of M rows by M columns. Such a zeroes matrix
acts on r, as it is not split.

Then, the above problem may be cast in a 2-block ADMM with one com-
posite variable [vec(L)T, vec(R)T]T with coefficient matrix [Ty, 0y n P 4] =
Tyn, Omvxn, v, r] and associated composite convex objective function being
the two latter terms of the objective function fused together.

In practice, solving directly over the composite variable is difficult so we
solve for its sub-variables separately in a pass of Block Coordinate Descent
(BCD), which is inexact and not part of the standard ADMM framework.
Some works denoted Generalized ADMM (GADMM) [42] have been devel-
oped for approximate minimization but involve the introduction of a relax-
ation factor which changes the problem to solve.

We might think to cast the problem in a 3-block ADMM, which has been
a topic of research the past few years [43, 44]: not necessarily convergent,
a simple sufficient condition for its convergence is that any two coefficient
matrices in the constraints must be orthogonal to each other. But, in our
case, the objective function is not separable in the different components of
the composite variable, so that we cannot apply the 3-block ADMM.

Thus, to the best of our knowledge, the analysis of the convergence of
such a BCD split in a 2-block ADMM remains an open question while our
experiments in the following Section 4 show its good practical recovery of
the seeked result. The alternative use of GADMM may be investigated but
will necessitate to solve new subproblems and to verify some additional sub-
optimality conditions.

3.4.2. Full-splitting algorithm
In the case of a full split of variables i.e. splitting both L and r, we can
rewrite the problem in the equivalent formulation:

: Iz
Jmin M|+ S]]y, + 5 ;quspi(—vecwvecm ¥ 4 vecR)) )
Pi

; vec M B vecL| | Oun
>t 1 veeS vecR|  |On,N.R

we see that it lies in the realm of 2-block ADMM with two composite variables
[vec(L)T, vec(R)T)T and [vec(M)T, vec(S)?]?, with the latter term having
associated objective function the sum of nuclear and ¢,; norms.

(48)
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Again, we only do inexact minimization over [vec(L)T, vec(R)?]" as well
as for [vec(M)”, vec(S)T]" via Block Coordinate Descent (BCD). The ques-
tion of its convergence is thus also open while experiments show good results.

3.5. Computational complexity

3.5.1. Semu-splitting algorithm

Assuming the same ordering of dimensions as for KRPCA, i.e. that D >
M > N where D = N,N.R and that M N > D. The proximal of the Huber
function composed with the Frobenius norm (plus a translation) is not the
most costly operation as it scales linearly with the input matrix dimensions
(so it is O(MN)). The evaluation of ¥(Iy ®@r) is O(MND) as well as for
the gradient evaluation in the PGD. Setting the number of PGD iterations
to K, we have a computational complexity of O(K M N D) for the algorithm.

3.5.2. Full-splitting algorithm

Via full splitting, so with a MM step for r, we have the task of inverting
a matrix at each MM iteration (or solving the associated linear system of
equations) of size D which will be O(D?) via Gaussian elimination. However,
the major cost is the computation of the matrix product W, ¥ 4y inside the
inverse, which will be O(NM D?) and cannot be cached. This time again,
consider K iterations of MM .Then, the cost of the r-update via MM is
O(K M N D?), which will be the overall computational complexity of the full
splitting algorithm. Table 1 recapitulates the complexities of all algorithms
proposed in this paper. We see the higher iteration cost of the full decoupling
method compared to the semi-decoupling one.

Method | KRPCA | HRKRPCA SD | HKRPCA FD
Complexity | OOMND) | O(KMND) | O(KMND?)

Table 1: Computational complexity of the introduced methods

Figure 3 presents a study of the convergence speed of the different meth-
ods. In the point-block method, Vp; € P, p; is the support of the i entry
of Y in some chosen order. We denote this setup for the semi-decoupling
algorithm as HKRPCA SD-pt and HKRPCA FD-pt for the full-decoupling
algorithm. In the column-block method, Vp; € P, p; is the support of the
i'" column y;. We denote this setup for the semi-decoupling algorithm as
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HKRPCA SD-col and HKRPCA FD-col for the full-decoupling algorithm. It
should be kept in mind that the different methods have different objective
functions. Nevertheless, we see that their convergence in terms of iterations,
except SRCS, behave similarly. Over time, we see that the point-wise HKR-
PCA methods (HKRPCA SD-pt and HKRPCA FD-pt) perform similarly
albeit a bit slower than KRPCA, whereas their column-wise counterparts
are noticeably slower (HKRPCA SD-col and HKRPCA FD-col). This is
explained by the implementation: the point-wise application of the Huber
function can be vectorized over the matrix, whereas the column-wise case
necessitates the slicing of the matrix along the columns before applying the
Huber function, which is computationally more demanding.

—— SRCS
KRPCA -2
—— HEKRPCA 5D-pt
—— HEKRPCA 5D-col —4
HKRPCA FD-pt
—— HEKRPCA FD-col

—— SR(S
KRPCA
—— HEKRPCA 5D-pt
—— HKRPCA SD-col
HKRPCA FD-pt
—— HKRPCA FD-col

conv. {log scale)
conv. {log scale)

o 20 40 60 80 100 o 5 10 15 20 25 30
iterations time (secs)

Figure 3: Convergence (log scale) vs iterations (left) and time (right)

4. Experiments

4.1. Simulation setup

4.1.1. FDTD data

We test our methods on electromagnetic simulations via Finite-Difference
Time-Domain (FDTD) with GprMax [45]. The scene, as described in Figure
1, is 4.9 x 5.4 m in crossrange (z-axis) vs downrange (z-axis) with a dis-
cretization step of 3mm. The front wall, parallel to the SAR movement,is
at a standoff distance to the radar of 1.2 m. It is homogeneous and non-
conductive, of thickness 20cm and relative permittivity e = 4.5. One target
is behind the wall, a perfect electric conductor (PEC) cylinder of radius 3mm
situated at coordinates (2.6,4). The radar moves 2cm along the x-axis be-
tween each acquisition, starting from x = 1.824m, with 67 different positions
overall. The signal sent is a ricker wavelet centered at 2 GHz.
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4.1.2. Noise generation

To simulate different data acquisitions, we add random heterogeneous
noise drawn from student-t noise. We will consider both pointwise and col-
umn wise noise. The column wise noise heterogeneity may arise as a result
of the wall structure, e.g. drywall. The pointwise case may arise by adding
the possibility of a frequency-dependant relative permittivity of the wall.
Additionally, we consider the possibility of outliers coming from a different
random process, which can be interpreted as mishandling in the acquisition
process,etc.

We firstly consider two pointwise cases.

e pointwise noise only: [Y];; = [L + ¥(Iny ® vec(R)];; + [T};;
e pointwise noise + outliers: [Y]; ; = [L+¥(Iy®vec(R)]; ;+[T];;+[O]:;

with T ; being i.i.d. centered univariate complex t-random variables with

f > 2 degrees of freedom (d.f.) ie. T,;; ~ Ct;(0,0) where the standard

deviation o is ajusted to get the desired SNR level. O is a matrix of outliers,

whose number is set by the user and whose support €2 is randomly selected

at uniform among all entries. The outliers are then drawn from a standard

gaussian i.e. Og ~ CN(0,I). Entries of O not in Q are then set to zero.
Secondly we consider two column wise cases.

e column wise noise only: y; = [L + ¥(Iy ® vec(R)].; + [T]..

e column wise noise + outliers: y; = [L+ ¥ (Iy ®vec(R)].;+[T].; +[0].;

3] )

where columns of T are i.i.d. random variables drawn from a m-variate
t-distribution: T.; ~ Ct,, r(0,0I) with f > 2. The outlying columns are se-
lected uniformly at random among all columns, with their support denoted
). The entries of O on those columns then follow a standard gaussian dis-
tribution i.e. Oq ~ CAN(0,I) while entries not supported on 2 are set to
zZero.

4.1.3. Hyperparameter tuning

The hyperparameters have been tuned by hand in the following study.
For fair comparisons, all algorithms are used with hyperparameters (when
applicable): A = 1,4 = 10,v = 1,¢ = 0.1, = 1el0, which have given good
results for all methods. They are run the same number of iterations, as all
algorithms iterations cycle through every variable, and a comparison in terms
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of convergence is not possible, the methods converging based on different
functionals. In order to avoid this tedious process, one may alternatively
tune the hyperparameters using bayesian optimisation (see e.g. [46] and
references therein). It uses a Gaussian Process (GP) prior over the fl-score
of the detection map of the algorithm to tune. It is then possible to get an
analytical formula for the posterior GP and to find sample hyperparameters
to evaluate next based on some metric such as Expected Improvement. This
can be readily implemented with the package BayesianOptimization [47].

The influence of the hyperparameters (A, ) on the performance of HKR-
PCA has been studied in Figure 4. There, each point’s Area Under the Curve
(AUCQ) is averaged over 30 draws. We see that there is a fairly large range
of values A € [0,20], € [1,100] where the AUC is high. Additionally, we
observed empirically that the Bayesian hyperparameter tuning method does
propose values in this area (e.g. A = 14, u = 99 here).

100

0.5

40 60 40 60
A A

Figure 4: AUC over a grid of hyperparameters for HKRPCA FD-pt (left) and HKRPCA
SD-pt (right) with pointwise noise

4.2. Performance evaluation

Sample results are shown for the different methods in Figure 5 with point-
wise noise only. The target location is indicated with a red circle.

We evaluate quantitatively the performance of the methods based on
their Receiver Operator Characteristic (ROC) averaged over 100 draws at
each point of the curve.

4.2.1. Pointwise noise only
We begin with a setup consisting in only pointwise heterogeneous noise,
that is following a centered multivariate student-t distribution. We chose
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Figure 5: Sample detection maps (one target with location circled in red)

the setup of degrees of freedom: d.f. = 2.01 and Signal to Noise Ratio:
SNR = 10dB to visualize at best the difference in performance of the different
methods. On Figure 6a, we plotted the resulting ROC. We observe that all
methods with the Huber cost perform in a similar fashion. KRPCA performs
worse and finally SRCS is the worst performing method.

4.2.2. Pointunse noise and point outliers

Next, we are interested in a setup with pointwise heterogeneous noise plus
100 point outliers, i.e. with perturbations coming from a different random
process. Here the outlying entries have pointwise noise generated from a
univariate standard gaussian distribution. On Figure 6b, we have the result-
ing ROC. We see that both HKRPCA SD-pt and HKRPCA FD-pt perform
similarly and better than HKRPCA SD-col and HKRPCA FD-col. KRPCA
and SRCS are the least well perfoming again.

4.2.3. Column wise noise only

To evaluate the effect of the block-wise methods, we thus generate block-
wise noise to see its effects and the resulting discrepancy in performance
of the different methods. On Figure 7a we have the resulting ROC with
column-wise heterogeneous noise. In our setup, this means that the noise
is considered radar position per radar position, and may change in power
over radar acquisitions. We see here, with a bit more degraded setup than
previous ones, that HKRPCA FD-col performs the best. Other methods
except SRCS are a bit below on the graph, and SRCS is last.

4.2.4. Column wise noise and column outliers
For one last setup, we add outliers to the column-wise setup. To the
column-wise heterogeneous noise, we add 25 column outliers i.e. with column-
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Figure 6: ROC with pointwise corruptions

wise noise generated from a standard multivariate gaussian. On Figure 7b
we have the corresponding ROC. We see a clearer separation of performance
between all methods. HRKPCA FD-col performs better than HKRPCA
SD-col which in turns performs better than HRKPCA FD-pt. The method
HRKPCA SD-pt comes after and KRPCA and SRCS are last.

On the whole, we have seen that the robust cost methods do perform
better in heterogeneous noise scenarios, and that the correct block structure
does impact the performance of those robust methods, especially and more
clearly with outliers. Finally, the full decoupling method with a MM step
performs better than the semi-decoupling method for blockwise setups.

5. Conclusion

In this paper, we stated a new method of one-step localisation of targets in
the context of TWRI. It is designed to be robust to heterogeneous noise and
outliers. The proposed resolution relies on the ADMM framework with two
distinct algorithms tailored. One the one hand, a single split of the variable
comprising the wall returns results in a closed form proximal evaluation.
On the other hand, an additional split of the variable comprising the target
returns lends itself to tailored MM step. We show on FDTD simulated data,
in more complex scenarios where the noise is heterogeneous or outliers are
present, that our method achieves better performances. This suggest further
studies on real experimental data where the wall is not an idealized dielectric

26



ROC curve ROC curve
1.0

T

0.81 0.8 1
0.6 0.6
o o
o o
[= [
0.4 4 —— SRCS 0.4 4 —— SRCS

KRPCA
—— HKRPCA_sd_pt
0.2 —— HKRPCA sd_col 0.2 —— HKRPCA_sd_col
—— HKRPCA_fd_pt —— HKRPCA _fd_pt
—— HKRPCA_fd_col 001 —— HKRPCA_fd_col

KRPCA
—— HKRPCA_sd_pt

0.01

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
FPR FPR

(a) ROC with only column-wise heterogeneous noise (b) ROC with both column noise and column out-
(student columnwise noise with d.f. = 2.01 and liers (student columnwise noise with d.f. = 2.1,
SNR= 6 dB) SNR= 12 dB and 25 column outliers)

Figure 7: ROC with column-wise corruptions

slab. Additionally, the methods proposed are in fact quite generic, and may
be used in similar contexts such as Ground Penetrating Radar (GPR).
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