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Detection Methods Based on Structured Covariance

Matrices for Multivariate SAR Images Processing

R. Ben Abdallah1, A. Mian2, A. Breloy1, A. Taylor3, M. N. El Korso1, D. Lautru1

Abstract—Testing the similarity of covariance matrices from
groups of observations has been shown to be a relevant approach
for change and/or anomaly detection in synthetic aperture radar
images. While the term “similarity” usually refers to equality
or proportionality, we explore the testing of shared properties
in the structure of low rank plus identity covariance matrices,
which are appropriate for radar processing. Specifically, we
derive two new generalized likelihood ratio tests to infer i) on
the equality of the low rank signal component of covariance
matrices, and ii) on the proportionality of the low rank signal
component of covariance matrices. The formulation of the second
test involves non-trivial optimization problems for which we tailor
efficient Majorization-Minimization algorithms. Eventually, the
proposed detection methods enjoy interesting properties, that are
illustrated on simulations and on an application to real data for
change detection.

Index Terms—GLRT, covariance testing, low rank structure,
SAR, change detection.

I. INTRODUCTION

Statistical testing of covariance matrix (CM) equality (or

proportionality) has received increasing interest in the context

of synthetic aperture radar (SAR) image processing. Indeed,

this well established hypothesis test has been successfully

studied and applied to change/anomaly detection and classi-

fication in SAR images. Notably, equality testing has been

proposed for change detection in SAR in [1]–[8]. A clear

overview and statistical analysis of this topic is proposed in

[9]. The extension to proportionality testing has been proposed

in [10], [11]. In this scope, elliptical noise modeling has

also been studied to develop robust CM-based SAR image

processing in [12]–[15].

In this paper, we propose new statistical tests in the context

of structured CM. Indeed, the CM of radar measurements

usually exhibit inherent structures. In a very general case, the

samples can be modeled as a realizations of a low rank (LR)

signal component plus white Gaussian (thermal) noise. This

leads to a CM structured as Σ = ΣR +σ2
I, where ΣR is the

LR signal CM. Taking this prior knowledge in the detection

process offers several advantages: i) introducing relevant prior

information (here, the LR CM structure) in the model improves

detection performances; ii) LR structured models allow to

deal with low sample support issues, since less samples are

required to estimate the CM. Especially, it allows to perform
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tests even when the sample covariance matrix (SCM) is not

invertible, while this condition is restrictive for standard tests;

iii) the considered formulation can go beyond equality and

proportionality testing. For example, consider local power

fluctuations of ground response modeled as Σi = τiΣR+σ2
I,

where τi ∈ R
+ and i denotes the index of a homogeneous set.

Such model leads to Σi 6= Σj as well as Σi 6∝ Σj for i 6= j.

If the goal is to detect a signal anomaly in ΣR, detectors

based on CM equality/proportionality testing may lead to an

excessive number of false alarms.

Specifically, we propose two novel Generalized Likelihood

Ratio Tests (GLRT) that account for the considered LR struc-

ture, with assumed known rank. Formally, these detectors re-

express the equality and proportionality tests, but only on the

signal LR component ΣR of the total CM. The derivation of

the second test requires to solve some non-trivial optimiza-

tion problems, for which we tailor appropriate Majorization-

Minimization (MM) algorithms in the supplementary materials

attached to this paper. It is worth mentioning that the proposed

formulations and optimization methods can also be adapted to

design various other tests - such as eigenvectors (or principal

subspace) equality testing - for other specific applications.

Finally, the performance of the proposed detectors are

illustrated on simulated data, where they exhibit interest-

ing properties. Furthermore, the benefits of the proposed

methods are also illustrated for a change detection applica-

tion on a UAVSAR dataset (courtesy of NASA/JPL-Caltech,

https://uavsar.jpl.nasa.gov). For this application, our conclu-

sions are the following: i) incorporating the LR structure in

CM equality testing offers an improvement of the detection

performance (especially for small local windows) with a small

increase in the computational cost; ii) testing the CM propor-

tionality (either with LR or full rank model) requires more

computational time, which does not appear to be beneficial

to obtain a high probability detection (PD). This is due to

the fact that these detectors are designed to be insensitive

to power fluctuations, while this phenomenon is relevant in

change detection. However, these detectors are still interesting

for a number of other purposes, such as ensuring a low PFA

in local anomaly detection [10]; iii) both of the LR methods

allow to increase the spatial resolution of the detection process,

as they are defined for lower sample support.

Notations: italic type indicates a scalar quantity, lower case

boldface indicates a vector quantity and upper case boldface

a matrix. The transpose conjugate operator is H . Tr{ } and | |
are respectively the trace and the determinant operators. etr{.}
is the exponential of trace operator. {wn}n∈[[1,N ]] denotes the

set of elements wn, with n ∈ [[1, N ]], often contracted in
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{wn}. Definition of needed eigenvalue decomposition will be

through the equality symbol
EVD
= . H++

M denotes the set of

M × M Hermitian positive definite matrices. ∝ stands for

“proportional to”. x ∼ CN (µ,Σ) is a complex-valued random

Gaussian vector of mean µ and CM Σ. x ∼ Γ(ν, ξ) is a

random variable following a Gamma distribution of shape ν
and scale ξ.

II. MODEL AND PROBLEM STATEMENT

1) Signal model: In the following, zik denotes a sample, in

which the superscript i ∈ [[0, I]] refers to the index of a set of

i.i.d. variables, and k ∈ [[1,Ki]] to the index of the sample in

this set (of size Ki). Depending on the context, i may stand

either for the index of a local patch, or for the index of a time-

series. For a given sample set {zik} of multivariate pixels, we

consider the following data model:

z
i
k = s

i
k + n

i
k (1)

• s
i
k is the ground response, that consists of a mixture of low

rank signal contributions. The resulting observation is modeled

as s
i
k ∼ CN (0,Ci) with unknown LR CM Ci. As commonly

assumed in the literature [16], [17], the rank R is considered

known, or already pre-established1.

• n
i
k ∼ CN (0, σ2

IM ) is the thermal noise of known variance

σ2. The extension of proposed algorithms to unknown σ2 is

trivial and is tested on real data in section V.

Consequently, the samples are distributed as z
i
k ∼ CN (0,Σi)

where the total CM has a LR plus identity structure. To reflect

this structure, we consider the following parameterization:

Σi = τiViΛiV
H
i + σ2

I
∆
= τiΣ

i
R + σ2

I (2)

where τi is a positive scaling factor, Vi is a M × R unitary

matrix, Λi is a R × R positive diagonal matrix. Eventually,

the likelihood of the dataset is

L({zik}|θ) =
I
∏

i=0

etr{−SiΣ
−1
i (θ)}

| Σi(θ) |Ki

(3)

with Si =
∑Ki

k=1 z
i
kz

iH
k and where θ denotes the set of

parameters defining the Σi’s (specified in the following).

Notice that this model generalizes the LR compound Gaussian

plus white Gaussian noise distribution, that is a realistic model

for radar measurements embedded in thermal noise [17], [22].

The latter corresponds to the special case Ki = 1, ∀i ∈ [[0, I]]
in our setting.

2) Problem statement: For the general model in (2)-(3), we

turn to the problem of testing whether the CM of the sample

set under test i = 0 shares some common properties with

the secondary sets i ∈ [[1, I]]. These properties are related to

the parameters of the decomposition in (2) (i.e. τi, Vi, and

Λi) and will be specified depending on the proposed test. This

problem is relevant to detect e.g., a local anomaly in the patch

w.r.t. adjacent patches, or a temporal change in the last sample

of a time-series.

1 Indeed, the proposed results can still be applied using plug-in rank
estimates or by integrating physical prior knowledge on this parameter [18].
About rank estimation, the reader is refered to the overview [19] and recent
methods using shrinkage [20] or random matrix theory [21].

III. STATE OF THE ART: EXISTING GLRTS

1) Equality testing: the standard hypothesis test [9] reads
{

H0 : Σ0 = Σ, Σi = Σ ∀i ∈ [[1, I]]

H1 : Σ0 6= Σ, Σi = Σ ∀i ∈ [[1, I]]
(4)

The GLRT for this hypothesis test, denoted tEglr, reads

|Σ̂H0
|/
(

|Σ̂0
H1

|ρ0 |Σ̂⋆
H1

|ρ⋆

) H1

≷
H0

δEglr, (5)

with the quantities K =
∑I

i=0 Ki, K⋆ = K − K0, the

ratios ρ0 = K0/K, ρ⋆ = K⋆/K, and the SCMs Σ̂H0
=

∑I

i=0 Si/K, Σ̂0
H1

= S0/K0 and Σ̂
⋆
H1

=
∑I

i=1 Si/K⋆.

2) Proportionality testing: The classical hypothesis test

[10] is
{

H0 : Σ0 = β0Σ, Σi = βiΣ ∀i ∈ [[1, I]]

H1 : Σ0 6= β0Σ, Σi = βiΣ ∀i ∈ [[1, I]]
(6)

The GLRT on proportionality, denoted tPglr, is given as:

(

|β̂0
H0

Σ̂
gfp
H0

|
|Σ̂0

H1
|

)K0 I
∏

i=1

(

|β̂i
H0

Σ̂
gfp
H0

|
|β̂i

H1
Σ̂

gfp
H1

|

)Ki

H1

≷
H0

δPglr, (7)

where {β̂i
H0

} and Σ̂
gfp
H0

are proportionality coefficients and

shape matrix estimated with the generalized fixed point esti-

mator (GFPE) [11] applied on the set {Si}i∈[[0,I]], {β̂i
H1

} and

Σ̂
gfp
H1

are obtained from the GFPE on the set {Si}i∈[[1,I]], and

where Σ̂
0
H1

is the SCM defined above.

IV. PROPOSED DETECTORS

A. GLRT for LR CM equality testing

In this section, we develop a GLRT that is sensitive to a

variation of any parameter of the LR signal CM in the set

i = 0. Thus, for the CM model in (2), consider the following

hypothesis test:










H0 :
∣

∣τiΣ
i
R = ΣR ∀i ∈ [[0, I]]

H1 :

∣

∣

∣

∣

∣

τiΣ
i
R = ΣR ∀i ∈ [[1, I]]

τ0Σ
0
R 6= ΣR,

(8)

that reads almost identical to the standard equality testing of

section III, except that the CMs belong to the set of LR plus

identity structured matrices S++
LR . Hence, the hypothesis test

can be recasted as


















H0 :
∣

∣

∣Σi = ΣR,H0
+ σ2

I
∆
= ΣH0

∈ S++
LR , ∀i ∈ [[0, I]]

H1 :

∣

∣

∣

∣

∣

∣

Σ0 = Σ
0
R,H1

+ σ2
I

∆
= Σ

0
H1

∈ S++
LR

Σi = Σ
⋆
R,H1

+ σ2
I

∆
= Σ

⋆
H1

∈ S++
LR , ∀i ∈ [[1, I]]

The expression of the GLRT is therefore

maxθlrE
H1

L({zik}|H1,θ
lrE
H1

)

maxθlrE
H0

L({zik}|H0,θ
lrE
H0

)

H1

≷
H0

δlrEglr , (9)

with sets θlrE
H1

=
{

Σ
0
H1

,Σ⋆
H1

}

and θlrE
H0

= {ΣH0
}. In the

context of Gaussian data, the MLE of LR structured CM is
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obtained by thresholding the eigenvalues of the SCM [16] with

the operator TR. This operator associates to any Hermitian ma-

trix Σ
EVD
= VΛV

H the regularization TR{Σ} EVD
= VΛ̃V

H

with

[Λ̃]i,i =

{

max([Λ]i,i, σ
2), i ≤ R

σ2, i > R
(10)

Therefore it can be easily shown that

θ̂
lrE

H0
=
{

TR{Σ̂H0
}
}

and θ̂
lrE

H1
=
{

TR{Σ̂0
H1

}, TR{Σ̂⋆
H1

}
}

with Σ̂H0
, Σ̂0

H1
and Σ̂

⋆
H1

defined in III. Finally, the GLRT

for testing the equality of LR structured matrices, denoted tlrEglr ,

reads as:

L({zik}|H1, θ̂
lrE

H1
)/L({zik}|H0, θ̂

lrE

H0
)

H1

≷
H0

δlrEglr (11)

To evaluate this test, three SVDs of SCMs are required. In

comparison, tEglr requires to compute the determinant of the

same three SCMs. The proposed tlrPglr is therefore slightly

computationally more expensive.

B. GLRT for LR CM proportionality testing

In this section, we derive a GLRT to infer on the proportion-

ality of the LR signal component of the CM. Notice that this

test differs from strict proportionality testing. Indeed, scaling

fluctuations should only apply on the LR part of the signal

CM, and not to the identity, related to the thermal noise. For

the CM model in (2), this leads to the following hypothesis

test










H0 :
∣

∣Σ
i
R = ΣR ∀i ∈ [[0, I]]

H1 :

∣

∣

∣

∣

∣

Σ
i
R = ΣR ∀i ∈ [[1, I]]

Σ
0
R 6= ΣR

(12)

which reads as signals sharing the same CM structure, but

with fluctuating power τi w.r.t. sample set i. The test (12) can

be recasted as:










H0 :
∣

∣Σi = τiVH0
ΛH0

(VH0
)H + σ2

I, ∀i ∈ [[0, I]]

H1 :

∣

∣

∣

∣

∣

Σ0 = V
0
H1

A
0
H1

(V0
H1

)H + σ2
I

Σi = τiV
⋆
H1

Λ
⋆
H1

(V⋆
H1

)H + σ2
I, ∀i ∈ [[1, I]]

(13)

where we collapsed a redundant parameter as A0 = τ0Λ0

(that is still diagonal). The expression of the corresponding

GLRT, denoted tlrPglr is given by:

maxθlrP
H1

L({zik}|H1,θ
lrP
H1

)

maxθlrP
H0

L({zik}|H0,θ
lrP
H0

)

H1

≷
H0

δlrPglr , (14)

with sets of parameters θlrP
H0

=
{

{τi}i∈[[0,I]],VH0
,ΛH0

}

and

θlrP
H1

=
{

{τi}i∈[[1,I]],V
⋆
H1

,Λ⋆
H1

,V0
H1

,A0
H1

}

. It is clear that

the maximization of the likelihood function is not trivial,

due notably to the unitary constraints on the eigenvectors.

To overcome this issue, we propose the use of the block-

MM algorithm [23]. This methodology can be applied to our

problem by generalizing some results of [22]. Due to space

constraints, the full derivation of the proposed algorithms

is left in the supplementary material attached to this paper.

Eventually, these algorithms allow to evaluate the MLEs θ̂
lrP

H0

and θ̂
lrP

H1
and the GLRT as

L({zik}|H1, θ̂
lrP

H1
)/L({zik}|H0, θ̂

lrP

H0
)

H1

≷
H0

δlrPglr (15)

In terms of computational cost, it is noted that each update

of our proposed MM algorithm is obtained in closed form.

Empirically, this algorithm converges quite fast, and we used

only 10 iterations in our application to real data. The main

bottleneck is in the update of the eigenvectors, which requires

to compute thin-SVD of an M × R matrix. Thus, this test is

more computationally expensive than tEglr or tlrPglr . However, it

is on the same scale as its full rank counterpart tPglr, which

involves fixed point iterations of SCMs inversions.

V. SIMULATIONS AND APPLICATION

A. Numerical simulations

In this section, the performance of the aforementioned

detectors is illustrated through simulations. We use as a criteria

the receiver operating characteristic (ROC) curve which dis-

plays the probability of detection (PD) versus the probability

of false alarm (PFA).

1) Simulation setup: We consider M = 20, R = 5, Ki =
25 ∀i with I = 3. The sample set {zik} is generated according

to z
i
k ∼ CN (0,Σi) with Σi given in (2): Vi are the first

R eigenvectors of the Toeplitz matrix [ΣT ]i,j = ρ|i−j| with

ρ = 0.9(1+
√
−1)/

√
2 and [Λi]r,r = α(R+1−r), where α is

set so that the signal to noise ratio fits SNR = Tr{Λi}/Rσ2 =
15dB with σ2 = 1. The variable τi is specified below for each

scenario. Under H1, the anomaly in the LR signal CM of the

set i = 0 is generated by either i) reversing the eigenvalues,

i.e. [Λ0]r,r = αr (“structure change”); or ii) changing one

of the eigenvectors in Vi (“subspace change”). Note that the

structure change is more challenging since a subspace change

is easier to detect at high SNR. In order to compute the ROC

curves, 104 Monte-Carlo runs are performed under both H0

and H1 and the PD and PFA are computed w.r.t. a threshold

grid for each detector.

2) Compared detectors: We compare the following detec-

tion statistics: the GLRT for equality testing tEglr from Section

III-1, the GLRT for proportionality testing tPglr from Section

III-2, the proposed GLRT for LR equality testing tlrEglr from

Section IV-A, and the proposed GLRT for LR proportionality

testing tlrPglr from Section IV-B.

3) Results: Figure 1 displays the ROC curves of the de-

tectors for the signal model from section IV-A (homogeneous

power), i.e. τi = 1 ∀i. Under this settings, the performance

of tEglr and tPglr are almost identical. The same observation

is made for tlrEglr and tlrPglr , which both outperform their full

rank counterparts since they exploit the LR structure of the

CM appropriately. Figure 2 displays the ROC curves of the

detectors for the signal model from section IV-B (fluctuating

power) with τi ∼ Γ(ν, 1/ν) and ν = 1. Under this settings

tlrPglr exhibits the best performance, as expected. This is mainly

due to a high false alarm rate of the other detectors, as the

fluctuation of the signal power generates CMs that are not

equal, nor proportional, even under H0. Hence, tlrPglr appears
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Figure 1: ROC curves for the model in IV-A: H1 is either a

structure change (top) or a subspace change (bottom).
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Figure 2: ROC curves for the model in IV-B. H1 is either a

structure change (top) or a subspace change (bottom).

interesting for reducing the false alarms rate when the signal

has a varying power over the observed sets.

B. Change detection on real data

In this section, the performance of the proposed detectors

is illustrated for change detection on a UAVSAR dataset.

1) Setup: The considered dataset is SanAnd 26524 03

Segment 4, of coordinates (top left pixel) [2891, 28891], with

2 acquisition dates : April 23, 2009 and May 11, 2015. For

one acquisition, the initial datacube size is 2360×600×3 and

is pre-processed using the wavelet-decomposition transform

presented in [24]. This transformation, which allows to de-

compose a SAR image into canals corresponding to a physical

behaviour of the scatterers, has been shown to increase the

detection performance [24]. This transformation increases the

depth of the datacube from M = 3 to M = 12. To form

local patches, we use a 5× 5 sliding window centered around

each pixel. As I = 2, these patches provide two sets: {z0k}
and {z1k} with k ∈ [[1, 25]]. The different presented detectors

are then applied on these two sets to test a change in the

properties/parameters of the CM between i = 0 and i = 1.

The ground truth for change detection is taken from [25]

and presented in Figure 3. This provides observations under

both H0 and H1, which allows us to compute the ROC curves

empirically.

2) Compared detectors: We compare the same detectors as

in the previous section. The proposed LR detection methods

are applied with R = 1, as a rank one signal component can

be assumed by analyzing the spectrum of the data matrix.

This simplification still allows to obtain interesting results in

average, and the use of local adaptive rank selection is left as a

potential extension. The noise variance σ2 is estimated locally

with the mean of the (M − 1) lowest eigenvalues computed

with a SVD of the SCM of all samples {zik} in the patch. To

show the benefits of the multivariate setting, we also compare

the results with a monovariate detector applied to the summed

entries of each pixel, denoted tm, as well as the so-called

normalized mean-differences detector, denoted tNdiff [26].

3) Results: The ROC curves of the different detectors

are displayed in Figure 4. In this example, tlrEglr offers an

improvement of the detection performance compared to the

standard equality testing tEglr. This improvement is obtained for

only a slight increase in the computational time, highlighting

the interest of the proposed LR formulation. tlrPglr offers similar

performance, but only for low false alarm rate. Thus, for this

application, this test may not be worth the increase in the

computational time. This is also the case for its counterpart

tPglr, which exhibits the lowest performance in this context.

Intuitively, a power fluctuation seems interesting to be captured

when it comes to change detection. Therefore, proportionality

testing (not sensitive to this change) may not be the most

appropriate for this application, as illustrated by the perfor-

mance of tPglr. However, this detector is still interesting for

other purposes, such as local anomaly detection [10].

For each detector, Figure 5 displays the PD w.r.t. the spatial

window size
√
K with fixed PFA = 5%. Up to a reasonable

window size, the detection performance increases w.r.t. K.

However, this is at the detriment of the spatial resolution

of the process. This figure hence illustrates the interest of

the proposed LR methods, as they offer an improvement of

the performance/resolution trade-off. Notably, the proposed

methods allow for K < M , where other standard covariance

based detectors are not defined (due to non-invertible SCMs).

VI. CONCLUSION

This paper proposed two new detectors for CM based

detection process. These detectors extend, respectively, the

equality and proportionality testing to LR structured CM

models, with a mild increase in the computational cost w.r.t.

their corresponding full rank counterparts. Numerical simu-

lations illustrated their properties and interest depending on

the context. An application to real data for change detection

in SAR images time-series showed the interest of the LR

approach. Specifically, the LR equality testing offers a gain

in detection performance, while the LR proportionality testing

does, but only for low PFA. Most notably, both of the proposed

LR methods allow to increase the spatial resolution of the

detection process, as they require fewer samples than the size

of the data.
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Figure 3: UAVSAR Dataset in Pauli representation. Left: April

23, 2009. Middle: May 15, 2011. Right: Ground Truth for

change detection.
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Figure 4: ROC curves (PD versus PFA) of the different

detectors on the UAVSAR dataset.
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Supplementary materials: Algorithms derivation for

“Detection Methods based on Structured Covariance

Matrices for Multivariate SAR Images Processing”
R. Ben Abdallah, A. Mian, A. Breloy, A. Taylor, M. N. El Korso, D. Lautru

Abstract

This document is dedicated to the derivation of Majorization-Minimization algorithms to evaluate the value of a GLRT
detector proposed in [1]. Section I presents the Majorization-Minimization framework and derive the required surrogates. Section
II develops algorithms for the detector referred to as t

lrP
glr (GLRT for LR CM proportionality testing).

I. BLOCK MAJORIZATION-MINIMIZATION FRAMEWORK

A. Block Majorization-Minimization algorithm

To solve further-coming optimization problems, we adopt the block majorization-minimization (MM) algorithm framework,

which is briefly stated below. For more complete information, we refer the reader to [2]. Consider the following problem:

minimize
θ

f (θ)

subject to θ ∈ Θ,
(1)

where the optimization variable θ can be partitioned into m blocks as θ = (θ1, . . . ,θm), with each ni-dimensional block

θi ∈ Θi and Θ =
∏m

i=1 Θi. At the (t+ 1)-th iteration, the i-th block θi is updated by solving the following problem:

minimize
θi

gi

(

θi|θ
(t)

)

subject to θi ∈ Θi,
(2)

with i = (t mod m) + 1 (so blocks are updated in cyclic order) and the continuous surrogate function gi

(

θi|θ
(t)

)

satisfying

the following properties:

f
(

θ
(t)

)

= gi

(

θ
(t)
i |θ

(t)
)

,

f
(

θ
(t)
1 , . . . ,θi, . . . ,θ

(t)
m

)

≤ gi

(

xi|θ
(t)

)

∀θi ∈ Θi,

f ′
(

θ
(t);d0

i

)

= g′i

(

θ
(t)
i ;di|θ

(t)
)

∀θ
(t)
i + di ∈ Θi,

d
0
i , (0; . . . ;di; . . . ;0) ,

where f ′(θ;d) stands for the directional derivative at θ along d. In short, at each iteration, the block MM algorithm updates

the variables in one block by minimizing a tight upperbound of the function while keeping the other blocks fixed.

B. Surrogates and updates

In the following, we derive two propositions needed for the algorithms design. These propositions are generic, but their

formulation mimics the notations of [1] for convenience. Specifically, the first proposition will be useful to derive updates

w.r.t. positive scaling factors and eigenvalues of the structured covariance matrices. The second proposition will be useful for

the update of eigenvectors.

Proposition 1 Let τi ∈ R
+, and sets of real parameters {λr} with λr ≥ 0, ∀r ∈ [[1, R]], {srk,i} with srk,i ≥ 0, ∀i ∈

[[1, I]], ∀r ∈ [[1, R]], ∀k ∈ [[1,Ki]], and σ2 > 0. The function

Li(τi) =
R
∑

r=1

[

Ki ln
(

τiλr + σ2
)

−
Ki
∑

k=1

τi λr srk,i
τiλr + σ2

]

(3)

is upperbounded at the point τ
(t)
i as

Li(τi|τ
(t)
i ) ≤ Ai ln (Biτi + Ci)−Di ln (τi) (4)
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where


























γr
i =

(

Ki +

Ki
∑

k=1

srk,i
τ
(t)
i λr

τ
(t)
i λr + σ2

)

βr
i =

Ki
∑

k=1

srk,i
τ
(t)
i λr

τ
(t)
i λr + σ2

Ai =
R
∑

r=1

γr
i

Bi =

∑R

r=1
γr

i
λr

τ
(t)
i

λr+σ2

∑R

r=1 γ
r
i

Ci =

∑R

r=1
γr

i
σ2

τ
(t)
i

λr+σ2

∑R

r=1 γ
r
i

Di =
R
∑

r=1

βr
i

(5)

with equality at τi = τ
(t)
i . The above surrogate function has a unique non-negative minimum that leads to the following MM

update:

τ
(t+1)
i =

DiCi

(Ai −Di)Bi

(6)

Proof: This generalize Propositions 1 and 2 from [3], which cover the case Ki = 1. The proof is in Appendix A.

Proposition 2 Let V ∈ C
M×R be a unitary matrix, {Bi}, with Bi ∈ H

++
R , ∀i ∈ [[1, I]] and {Ai}, with Ai ∈ H

++
M , ∀i ∈

[[1, I]]. The function

f(V) = −
I

∑

i=1

Tr{VH
AiVBi} (7)

is upperbounded at point V(t) as

f(V|V(t)) ≤ −
I

∑

i=1

[

Tr{VH
AiV

(t)
Bi}+Tr{V(t)H

AiVBi}
]

+ const. (8)

with equality at V(t) = V. The above surrogate function has a unique minimum on the set of unitary matrices, that leads to

the following MM update

V
(t+1) = UleftU

H
right (9)

where Uleft and U
H
right are the left and right eigenvectors of the thin-SVD

I
∑

i=1

(AiV
(t)
Bi)

TSVD
= UleftDU

H
right (10)

Proof: The proof is in Appendix B.

II. GLRT FOR LR CM PROPORTIONALITY TESTING (SECTION IV.B OF [1])

A. General model and likelihood function

We recall that, in [1], zik denotes a sample, in which the superscript i ∈ [[0, I]] refers to the index of a set of i.i.d. variables,

and k ∈ [[1,Ki]] to the index of the sample in this set. We have z
i
k ∼ CN (0,Σi), so for a given sample set {zik}, the likelihood

of the dataset reads

L({zik}|θ) =
I
∏

i=0

etr{−SiΣ
−1
i (θ)}

| Σi(θ) |Ki

, (11)

with Si =
∑Ki

k=1 z
i
kz

iH
k and where θ denotes the set of unknown parameters defining the Σi’s (specified below).

B. Expression of the GLRT

We recall that the hypothesis test derived in section IV.B of [1] for the LR CM proportionality testing is expressed as










H0 :
∣

∣Σi = τiVH0ΛH0(VH0)
H + σ2

I, ∀i ∈ [[0, I]]

H1 :

∣

∣

∣

∣

∣

Σ0 = V
0
H1

A
0
H1

(V0
H1

)H + σ2
I

Σi = τiV
⋆
H1

Λ
⋆
H1

(V⋆
H1

)H + σ2
I, ∀i ∈ [[1, I]]

(12)

Consequently, its corresponding GLRT expression, denoted tlrPglr is given by:

maxθlrP
H1

L
(

{zik}|H1,θ
lrP
H1

)

maxθlrP
H0

L({zik}|H0,θ
lrP
H0

)

H1

≷
H0

δlrPglr , (13)

with sets of parameters

θ
lrP
H0

=
{

{τi}i∈[[0,I]],VH0
,ΛH0

}

,

θ
lrP
H1

=
{

{τi}i∈[[1,I]],V
⋆
H1

,Λ⋆
H1

,V0
H1

,A0
H1

}

.
(14)
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Algorithm 1 MM algorithm to compute θ̂
lrP

H0
for tlrPglr (Section IV.B of [1])

1: Input: {Si,Ki} for i ∈ [[0, I]], R, and σ2.

2: repeat

3: t← t+ 1
4: Update {τ

(t)
i }, ∀i ∈ [[0, I]] with (6)

5: Update {λ
(t)
r }, ∀r ∈ [[1, R]] with (21)

6: Update V̂
(t)
H0

with (24)

7: until Some convergence criterion is met.

8: Output: θ̂
lrP

H0
=

{

{τ̂i}i∈[[0,I]], V̂H0
, Λ̂H0

}

C. MM algorithm to optimize the likelihood under H0 w.r.t. θ
lrP
H0

Under H0, we have the following optimization problem:

maximize
θlrP
H0

L({zik}|H0,θ
lrP
H0

)

subject to τi ≥ 0, ∀i ∈ [[0, I]]
[ΛH0

]r,r ≥ 0, ∀r ∈ [[1, R]]

(VH0)
H
VH0 = I.

(15)

This problem is equivalent to maximizing the negative log-likelihood as

minimize
θlrP
H0

∑I

i=0

[

Ki ln(|Σi|) + Tr
{

SiΣi
−1

}]

subject to Σi = τiVH0
ΛH0

(VH0
)H + σ2

I, ∀i ∈ [[0, I]]
τi ≥ 0, ∀i ∈ [[0, I]]
[ΛH0 ]r,r ≥ 0, ∀r ∈ [[1, R]]

(VH0
)HVH0

= I,

(16)

for which we derive MM updates in the following. The corresponding algorithm is summed up in the box Algorithm 1.

1) Update {τi}: First, remark that Σ−1
i can be expressed thanks to the matrix inversion lemma as:

Σ
−1
i = (τiVH0

ΛH0
(VH0

)H + σ2
I)−1 = σ−2

I−VH0
Γi(VH0

)H , ∀i ∈ [[0, I]] (17)

with
Γi = diag (αi,1, . . . , αi,R)

αi,r =
τiλr

σ2(τiλr + σ2)
, ∀r ∈ [[1, R]], ∀i ∈ [[0, I]]

λr = [ΛH0
]r,r , ∀r ∈ [[1, R]]

(18)

For other variables fixed, the problem in (16) is separable for each τi. After some direct calculus, the objective of (16) w.r.t.

the variable τi only can be obtained as

Li(τi) =
R
∑

r=1

[

Ki ln
(

τiλr + σ2
)

−
Ki
∑

k=1

τi λr srk,i
τiλr + σ2

]

+ const. (19)

with srk,i = v
H
r z

i
kz

iH
k vr and where VH0 = [v1, . . . , vR]. With this formulation of the objective over τi, we can directly

apply Proposition 1 to obtain the update of all τi’s as in (6).

2) Update ΛH0
: First recall that ΛH0

is diagonal and that we have the notation λr = [ΛH0
]r,r , ∀r ∈ [[1, R]]. Following

the derivations of the previous section, the objective of (16) is separable in λr and reads for each λr as:

Lr(λr) =
I

∑

i=1

[

Ki ln(τiλr + σ2)−
Ki
∑

k=1

τiλrs
r
k,i

τiλr + σ2

]

+ const. (20)

Thus, one can note that {τi} and {λr} play similar role in the objective. We can therefore obtain a surrogate by adapting the

formulation in Proposition 1. The resulting update for these variables is given as:

λ(t+1)
r =

DrCr

(Ar −Dr)Br

(21)
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Algorithm 2 MM algorithm to compute θ̂
lrP

H1
for tlrPglr (Section IV.B of [1])

1: Input: {Si,Ki} for i ∈ [[0, I]], R, and σ2.

2: Call Algorithm 1 on the restricted set {Si} for i ∈ [[1, I]], the output is {τ̂i}, Λ̂
⋆
H1

, V̂⋆
H1

3: Compute Â
0
H1

and V̂
0
H1

with (29)

4: Output: θ̂
lrP

H1
=

{

{τ̂i}i∈[[1,I]], V̂
⋆
H1

, Λ̂⋆
H1

, V̂0
H1

, Â0
H1

}

with


























βr
i =

Ki
∑

k=1

srk,i
τiλ

(t)
r

τiλ
(t)
r + σ2

γr
i = Ki +

Ki
∑

k=1

srk,i
τiλ

(t)
r

τiλ
(t)
r + σ2

Ar =
I

∑

i=1

γr
i

Br =

∑I

i=1
γr

i
τi

τiλ
(t)
r +σ2

∑I

i=1 γ
r
i

Cr =

∑I

i=1
γr

i
σ2
n

τiλ
(t)
r +σ2

∑I

i=1 γ
r
i

Dr =
I

∑

i=1

βr
i

(22)

3) Update VH0
: Using (17), the objective in (16) w.r.t. VH0

fixing remaining variables is expressed as

Lv(VH0) = −
I

∑

i=0

Tr{(VH0)
H
SiVH0Γi}+ const. (23)

with Γi in (18). Thus, we can directly apply Proposition 2 to obtain the update

V
(t+1)
H0

= UleftU
H
right, with

I
∑

i=0

(

SiV
(t)
H0

Γi

)

TSVD
= UleftDU

H
right (24)

D. MM algorithm to optimize the likelihood under H1 w.r.t. θ
lrP
H1

Under H1, we have the following optimization problem:

maximize
θlrP
H1

L({zik}|H1,θ
lrP
H1

)

subject to τi ≥ 0, ∀i ∈ [[1, I]]
[

Λ
⋆
H1

]

r,r
≥ 0, ∀r ∈ [[1, R]]

[

A
0
H1

]

r,r
≥ 0, ∀r ∈ [[1, R]]

(V⋆
H1

)HV
⋆
H1

= I

(V0
H1

)HV
0
H1

= I

(25)

This problem is equivalent to two separate ones in respectively {{τi}i∈[[1,I]], Λ
⋆
H1

, V
⋆
H1
} and {Â0

H1
, V̂

0
H1
}, for which we

derive appropriate solutions in the following. The corresponding global algorithm is summed up in the box Algorithm 2.

1) Solving the MLE for {τi}i∈[[1,I]], Λ
⋆
H1

, and V
⋆
H1

under H1 : This problem requires solving:

minimize
{τi},Λ⋆

H1
,V⋆

H1

∑I

i=1

[

Ki ln(|Σi|) + Tr
{

SiΣi
−1

}]

subject to Σi = τiV
⋆
H1

Λ
⋆
H1

(V⋆
H1

)H + σ2
I, ∀i ∈ [[1, I]]

τi ≥ 0, ∀i ∈ [[1, I]]
[

Λ
⋆
H1

]

r,r
≥ 0, ∀r ∈ [[1, R]]

(V⋆
H1

)HV
⋆
H1

= I,

(26)

which is identical to (16) except that the set i = 0 is excluded. Hence, we can directly apply Algorithm 1 to obtain the solutions

{τ̂i}, Λ̂
⋆
H1

, V̂⋆
H1

.

2) Solving the MLE for Â
0
H1

and V̂
0
H1

under H0: This problem requires solving

minimize
A0

H1
,V0

H1

K0 ln(|Σ0|) + Tr
{

S0Σ0
−1

}

subject to Σ0 = V
0
H1

A
0
H1

(V0
H1

)H + σ2
I

[

A
0
H1

]

r,r
≥ 0, ∀r ∈ [[1, R]]

(V0
H1

)HV
0
H1

= I

(27)
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The solution corresponds to the MLE of LR structured CM in the context of Gaussian data. Denote the EVD of the SCM as

follows:

S0/K0
EVD
=

[

UR U
⊥
R

]

[

DR 0

0 DM−R

]

[

UR U
⊥
R

]H
(28)

The solution is given as (cf. section IV.A. in [1] and [4]).






[

Â
0
H1

]

r,r
= max([DR]r,r − σ2, 0), ∀r ∈ [[1, R]]

V̂
0
H1

= UR

(29)

APPENDIX A

PROOF OF PROPOSITION 1

The first part of the proof follows the lines of Proposition 1 in [3]. First, we construct an inequality by the first order Taylor

expansion of ln as:

−
Ki
∑

k=1

τi λr srk,i
τiλr + σ2

≤ −
Ki
∑

k=1

srk,i
τ
(t)
i λr

τ
(t)
i λr + σ2

[

1 + ln(τiλr)− ln(τiλr + σ2)
]

+ const. (30)

The cost function Li is therefore majorized by a first surrogate as:

Li(τi|τ
(t)
i ) ≤

R
∑

r=1

[(

Ki +

Ki
∑

k=1

srk,i
τ
(t)
i λr

τ
(t)
i λr + σ2

)

ln
(

τiλr + σ2
)

−

(

Ki
∑

k=1

srk,i
τ
(t)
i λr

τ
(t)
i λr + σ2

)

ln(τi)

]

(31)

that reads

Li(τi) ≤
R
∑

r=1

[

γr
i ln

(

τiλr + σ2
)

− βr
i ln(τi)

]

(32)

with γr
i and βr

i in (5). Second, thanks to the Jensen’s inequality, we have:

R
∑

r=1

γr
i ln

(

τiλr + σ2
)

≤

(

R
∑

r=1

γr
i

)

ln





∑R

r=1 γ
R
i

τiλr+σ2

τ
(t)
i

λr+σ2

∑R

r=1 γ
r
i



+ const. (33)

that splits into

R
∑

r=1

γr
i ln

(

τiλr + σ2
)

≤

(

R
∑

r=1

γr
i

)

ln







∑R

r=1
γr

i
λr

τ
(t)
i

λr+σ2

∑R

r=1 γ
r
i

τi +

∑R

r=1
γr

i
σ2
n

τ
(t)
i

λr+σ2

∑R

r=1 γ
r
i






+ const. (34)

Finally, we have the second surrogate function

Li(τi) ≤ Ai ln (Biτi + Ci)−Di ln (τi) (35)

with Ai, Bi, Ci and Di in (5). The proof concludes by directly applying Proposition 2 of [3], that states that the above

majorizer is quasiconvex and has a unique minimizer given in (6).

APPENDIX B

PROOF OF PROPOSITION 2

The function f in (7) is concave so it can be majorized by its first order Taylor expansion, which is the surrogate given in

(8). Minimizing (8) under unitary constraints is equivalent to solve

minimize
V

∥

∥

∥

(

∑I

i=1 AiV
(t)
Bi

)

−V

∥

∥

∥

2

F

subject to V
H
V = I

(36)

which is an orthogonal Procrustes problem [3] that has a unique solution given in (9).
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