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Subspace learning grounds

zi ≃ UUHzi, with U ∈ St(p, k) ∆
= {U ∈ Cp×k | UHU = I}
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Plan overview

minimize
U∈St(p,k)

f (U)

• Design the model/objective function f

• Solve the constrained minimization problem

• Analyze the estimation problem (performance)

• Apply the result to some task
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Principal component analysis (PCA)

“Vanilla” PCA of rank k

• Singular value decomposition ( SVD) of the data matrix Z = [z1, · · · , zn] ∈ Cp×n

Z SVD
=

[
U|U⊥]DVH

• Loading vectors U ∈ St(p, k)
• Principal components zk

i = UHzi ∈ Ck, projected data z̃i = Uzk
i

Solution of multiple underlying problems (frameworks)
→ each point of view offers interesting tools and extensions
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PCA: geometric point of view

• Euclidean distance dist(U, z) =
√

zHz − zHUUHz

• Geometric PCA [Pearson, 1901]

minimize
U∈St(p,k)

n∑
i=1

dist2(U, zi)

a solution U⋆ is the k leading eigenvectors of ZZH =
∑n

i=1 zizi
H/n ⇔ PCA

• Extensions using alternate distances

• Robust costs: f(U) =
∑n

i=1 ρ(dist2(U, zi)) [Ding, 2006]

• Other objects: f(U) =
∑n

i=1 dist2
G(p,k)(U,Ui) [Marrinan, 2014] 5
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PCA: statistical point of view (1/2)

• Covariance matrix E
[
zzH] = Σ

• Statistical PCA a.k.a. “maximizing expected variance” [Hotelling, 1933]

maximize
U∈St(p,k)

Tr
{

UH (∑n
k=1 zizH

i /n
)

Σ̂

U}

a solution U⋆ is the k leading eigenvectors of Σ̂ ⇔ PCA

• Extensions using alternate plug-in estimates
• M-estimators, R-estimators, ... [Drašković, 2019]
• Structure priors (Toeplitz, persymetric, ...) [Mériaux, 2019]

• Tools: notion of uncorrelated principal components 6
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PCA: statistical point of view (2/2)

• Probabilistic PCA in Gaussian model [Tipping, 1999]

zi = UD1/2si + ni with s ∼ CN (0, Ik) and n ∼ CN (0, σ2Ip)

ML estimator of U is the k leading eigenvectors of
∑n

i=1 zizi
H ⇔ PCA

• Extensions using alternate distributions

zi ∼ CES(0, UDUH + σ2Ip

Σ

, g) [Bouchard, 2021]

L({zi};Σ) = n log |Σ|+ p
∑n

i=1 log g(zH
i Σ

−1zi)

or mixtures of independent contributions [Sun, 2016] [Hong, 2018]

• Tools: statistical analysis, performance bounds, missing data, ... 7
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PCA: one of many Bayesian point of views [Besson, 2011]

• Bayesian PCA: prior on U in zi
d
= Usi + ni

• Bingham-Langevin prior [Ben Abdallah, 2020]

U ∼ CGBL(C, {Ar})

LU(U) ∝ exp(
∑k

r=1
[
Re{cH

r ur}+ uH
r Arur

]
)

• MMSD estimator

f(Û) = E
[
||ÛÛH − UUH||2F

]
• MAP

f(U) = L({zi}|U)

data fitting

+ LU(U)

shrinkage
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PCA: algebraic point of view

• Low-rank approximation
minimize

X
||Z − X||2F

subject to rank(X) = k

X⋆ is the rank-k truncation of the SVD⇔ subspace recovered by PCA

• Extensions using alternate decompositions/structures
• Low-rank plus sparse recovery (Robust PCA) [Candès, 2011]

• Matrix completion (missing entries) [Boumal, 2016]

• Additional structure in the principal components [Uematsu, 2017]

• Non-negative matrix factorization, ... 9
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Sparse PCA

• Sparse PCA: variable selection through the loading vectors

• In practice add sparsity-promoting penalties ρS(U) =
∑p

i=1
∑k

j=1 ℓϵ([U]i,j)

−2 −1 0 1 2
0

0.5

1

|x|p

c log(1 +
|x|
p )

1 − exp(− |x|
p )

Entry-wise sparse penalty ℓϵ
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“Design” part: concluding overview

Motivations: accurate fitting, robustness, introducing prior, regularization

Statistics

• Likelihood & Covariance
z ∼ CES(0,Σ(U,θ), g)

• Bayesian priors
U ∼ CGBL(C, {Ar})

Geometry

• Distances
dist(U, z) =

√
zHz − zHUUHz

• Sparsity
ℓ1-, ℓ2,1-norm
ℓ0-norm proxies

Matrix algebra: U hidden in a low-rank matrix decomposition 11
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Plan overview

minimize
U∈St(p,k)

f (U)

• Design the model/objective function f

• Solve the constrained minimization problem

• Analyze the estimation problem (performance)

• Apply the result to some task
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Introduction

• Problem: solving
minimize
U∈St(p,k)

f (U)

on the Stiefel manifold

St(p, k) = { U ∈ Cp×k | UHU = I }, k < p

• Examples: all flavors of PCA, subspace recovery, low-rank matrix recovery, ...

• Issue: orthonormality constraint is not friendly ! (non-convex, bi-linear)

13
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Existing solutions

• Solution #1: Riemannian optimization on St(p, k)
ABS09 Absil, Mahony, Sepulchre, “Optimization algorithms on matrix manifolds,” Princeton Univ. Press, 2009
EDE98 Edelman, Arias, Smith, “The geometry of algorithms with orthogonality constraints,” SIMAX, 1998
MAN02 Manton, “Optimization algorithms exploiting unitary constraints,” IEEE Tans. on SP, 2002

• Solution #2: artful ADMM tricks involving f = fu + fv

minimize
U,V

fu (U) + fv (V)

subject to U ∈ St(p, k)
U = V

UEM19 Uematsu, Fan, Chen, Lv, Lin, “SOFAR: Large-Scale Association Network Learning,” IEEE Trans. on IT, 2019

• Solution #3: Majorization-Minimization ticks ? 14
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Some references on Majorization-Minimization (MM)

• Tutorial articles:
HUN04 Hunter, Lange, “A Tutorial on MM Algorithms”, Amer. Statistician, 2004

SUN17 Sun, Babu, Palomar, “Majorization-Minimization Algorithms in Signal Processing, Communications,
and Machine Learning”, IEEE Trans. on SP, 2017

• Courses slides:
LAN07 Lange, “The MM Algorithm”, Departments of Biomathematics, UCLA, 2007

SUN16 Sun, Palomar, “Majorization-Minimization Algorithm Theory and Applications”, Department of
Electronic and Computer Engineering, HKUST, 2016

• MM for St(p, k):

BRE21 Breloy, Kumar, Sun, Palomar, “Majorization-Minimization on the Stiefel Manifold With Application to
Robust Sparse PCA”, IEEE Trans on SP, 2021 15
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The MM Algorithm principle (1/3)

• Consider the optimization problem

minimize
x

f (x)

subject to x ∈ X ,

where f is too complex to be handled directly

• The idea is to successively minimize an approximation g(x|xt)

xt+1 = argmin
x∈X

g(x|xt)

hoping the sequence {xt} will converge to a critical point of f

• The MM algorithm provides
• The guidelines for the construction of such function g
• The conditions to ensure the success of this method 16
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The MM Algorithm principle (2/3)

Construction rules for the surrogate function g

(A1) Equality at the considered point

g(y|y) = f(y) ∀ y ∈ X

(A2) “Majorization”
f(x) ≤ g(x|y) ∀ x,y ∈ X

(A3) Equality of directional derivatives

g′(x,y;d)|x=y = f′(y;d) ∀ d with y + d ∈ X

(A4) g(x|y) is continuous in x and in y

17
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The MM Algorithm principle (3/3)

“Iteratively minmizing a smooth local tight upperbound of the objective”

xt+1 = argmin
x∈X

g(x|xt)
18



Overview Design Solve Analyze Apply Conclusion

MM for St(p, k) (1/3)

• General idea:
• Apply the MM principle for St(p, k)
• Formulate iterations as orthogonal Procrustes problems
• Iterations under orthonormality constraint are hence easily solved !

• Unified view and generalizations of a well known trick

KOS91 Koschat, Swayne, “A weighted Procrustes criterion,” Psychometrika, 1991
KIE02 Kiers, “Setting up alternating least squares and iterative majorization algorithms for solving various

matrix optimization problems,” Computational statistics & data analysis, 2002

19
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MM for St(p, k) (2/3)

• New rule
(A5) Linearity: restricting to St(p, k), g can be expressed as

g
(
U|Ut) = −Tr

{
(R(Ut))HU

}
− Tr

{
UHR(Ut)

}
+ const.,

where R
(
Ut) is a matrix function of Ut.

• MM steps: Minimizing (A5) on St(p, k) ⇔ orthogonal Procrustes

minimize
U

||R
(
Ut)− U||2F

subject to UHU = I
⇒

U(t+1) = VLVH
R

U(t+1)∆= PSt
{

R(Ut)
}

with R(Ut)
TSVD
= VLDVH

R
20
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MM for St(p, k) (3/3)

• Convergence to the KKT set:
RAZ13 Razaviyayn, Hong, Luo, “A Unified Convergence Analysis of Block Successive Minimization Methods for

Nonsmooth Optimization”, SIOPT, 2013
Fu17 Fu, Huang, Hong, Sidiropoulos, Man-Cho So, “Scalable and flexible multiview max-var canonical

correlation analysis,” IEEE Trans. on SP, 2017

• Convergence in variable: case by case study
KIE95 Kiers, “Maximization of sums of quotients of quadratic forms and some generalizations,”

Psychometrika, 1995
LER17 Lerman, Maunu, “Fast, robust and non-convex subspace recovery,” Info. and Inference (IMA), 2017

21
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Finding R(·): the surrogate catalog

• Problem: finding surrogates of the form

g
(
U|Ut) = −Tr

{
(R(Ut))HU

}
− Tr

{
UHR(Ut)

}
+ const.

• Atoms covered:
• Convex/concave quadratic functions (QFs)
• Convex/concave composition of a QF and a function ρ

• Functions that have element-wise quadratic surrogates
• Ratios of QFs

• Overall:
• Most of the standard costs are covered
• Easy to build/recognize meaningful costs by combination

22
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Surrogates for convex/concave QFs (1/2)

Let M < 0, D < 0, and
fB (U) = Tr

{
UHMUD

}

Prop.1 : The function −fB admits a
linear majorizing surrogate with

R(Ut) = MUtD.

with equality at point Ut

−101−1 0 1
0

10

20
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Surrogates for convex/concave QFs (2/2)

Prop.2: The function fB admits on St(p, k) a linear majorizing surrogate with

R(Ut) = −KUtD,

where K = S − λmax
S I and λmax

S is the largest eigenvalue of S. (equality at Ut)

24
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Surrogates for ratios of QFs

Let C ≻ 0, A < 0 and
fq(U) = −Tr

{(
UHCU

)−1 UHAU
}
,

Prop.3: The function fq admits on St(p, k) a linear majorizing surrogate with

R(Ut) = A1/2T(Ut)−
(

KUtT̃(Ut)
)
,

and
T(Ut) = A1/2Ut ((Ut)HCUt)−1

,

T̃(Ut) =
(
T(Ut)

)H T(Ut),

K = C − λmax
C I,

where λmax
C is the largest eigenvalue of C. (equality at Ut)

25
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Examples (1/2)

• A simple example: let M ∈ H++
M and u1 ∈ St(p, 1), consider the problem

minimize
u1

− uH
1 M u1

subject to uH
1 u1 = 1

The solution is obviously the strongest eigenvector M. However... applying Prop.1 yields

uH
1 Mu1 | ut

1 ≥
(
utH

1 M
)

u1 + uH
1
(
Mut

1
)
+ const.,

so the Procrustes-MM algorithm is

ut+1
1 = PSt

{
Mut

1
}

and we just rediscovered the power method...

26
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Examples (2/2)

Something more complex but still doable
Denote U = [u1, . . . ,uk],

maximize
U∈St(p,k)

k∑
i=1

[
uH

i Aiui

uH
i Ciui

+ uH
i Miui + 2Re

{
uH

i ci
}]

Hint: R(Ut) = [Rt
1ut

1, . . . ,Rt
kut

k ]

27
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Application to non-convex RSR

• Definition: ρ : R −→ R+ is a concave non-decreasing function

minimize
U∈St(p,k)

n∑
i=1

ρ
(
dist2 (U, zi)

)
• Examples:

· Least square: ρLS(t) = t

· Huber: ρHub(t) =
{

t/
√

T if ≤ T
2
√

t −
√

T if t > T

· Cauchy-type: ρC(t) = T ln(T + t)

· Geman-McClure: ρGMC(t) = t/(T + t)

28
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Procrustes-MM algorithm

Prop.4: At a a given point Ut, the objective function majorized by:

g
(
U|Ut) = −Tr{UtHM(Ut)U} − Tr{UHM(Ut)Ut

R(Ut)

}+ const.

with

M (U) =

n∑
i=1

ρ′
(
dist2 (U, zi)

)
zizH

i

MM algorithm: Since g is linear (A5) we have the updates

Ut+1 = PSt
{

M
(
Ut)UtH }

Originally proposed as a fixed-point heuristic in
DIN06 Ding, Zhou, He, Zha, “R1-PCA: rotational invariant ℓ1-norm principal component analysis for robust

subspace factorization,” ACM, 2006 29
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Different algorithms (and computational bottlenecks)

LER17 Quadratic MM, data matrix version rank-k SVD(p × n)

Ut+1 = Pk{Z̃t}, with [Z̃t]:,i =
√

ρ′
(
dist2 (Ut, zi)

)
zi

MAR05 Fixed point heuristic, covariance matrix version rank-k SVD(p × p)

Ut+1 = Pk
{

M
(
Ut)} , with M

(
Ut) = Z̃tZ̃H

t

MAN02 Steepest descent on Stiefel ×thin-SVDs(p × k)

Ut+1 = PSt
{

Ut + γ ∇f(Ut)
}
, with the right γ

MAN02 Newton method on Stiefel (p × k)2 system

Ut+1 = PSt{Ut + Y}, with Y = cpoint(Ut,∇f(Ut),Hf(Ut))

DIN06 Procrustes-MM thin-SVD(p × k)

Ut+1 = PSt
{

M
(
Ut)Ut}

30
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Objective value (-optimal value) versus CPU time (p = 30, k = 5, n = 100)
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Average CPU time of an iteration versus size and rank
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Plan overview

minimize
U∈St(p,k)

f (U)

• Design the model/objective function f

• Solve the constrained minimization problem

• Analyze the estimation problem (performance) For another talk ;)

• Apply the result to some task

33
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Change detection in satellite image time-series

Monitoring natural disasters:

PolSAR images of Ishinomaki and Onagawa areas [Sato, 2012], Nov.2010 (left), Apr.2011 (right).
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Problems to consider

Huge increase in the number of available acquisitions:

• Sentinel-1: 12 days repeat cycle, since 2014
• TerraSAR-X: 11 days repeat cycle, since 2007
• UAVSAR, ...

Detect changes
• Massive amount of data −→ Automatic process
• Unlabeled data −→ Unsupervised detection

Chosen approach: detection with a statistical framework

36
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Change detection with GLRT

Parametric probability model

Zt ∼ L(Zt;θt)

Hypothesis test{
H0 : θ1 = θ2 (no change)
H1 : θ1 ̸= θ2 (change)

GLRT
max
θ1,θ2

L ({Z1,Z2} ; {θ1,θ2})

max
θ0

L ({Z1,Z2} ; θ0)

H1
≷
H0

λGLRT

t = 1

p(z;θ1)

z

t = 2

p(z;θ2)

z

37
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Dataset

UAVSAR SanAnd_26524_03
• CD between April 2009 - May 2011 [Nascimento19]
• Polarimetric data −→ wavelet decomposition −→ p = 12 dim. pixels

38
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Empirical hints for the chosen model

Histogram of UAVSAR data (HH)
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Covariance based change detection

Models for the GLRT in SAR-ITS: appropriate choice of L and θ

Gaussian
z ∼ CN (0,Σ)

θ = Σ

Compound-Gaussian
zi ∼ CN (0, τiΣ)

θ = {Σ, {τi}}

Low-rank Gaussian
z ∼ CN (0,Σk + σ2I)
θ = Σ, with rank(Σk) = k

Low-rank Compound-Gaussian
zi ∼ CN (0, τi(Σk + σ2I))
θ = {Σ, {τi}}, with rank(Σk) = k

Optimization handled with Σ = UDUH and previous techniques (MM, Riemannian opt.) 40
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Results with a 5 × 5 sliding windows: Gaussian detectors

41
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Results with a 5 × 5 sliding windows: Robust detectors

41
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Performance curves (p = 12, k = 3)
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Concluding overview on my works

“Some flavors of PCA”

• Design
• Covariance structures in elliptical models
• Bayesian priors on orthonormal bases
• Robust geometric and/or sparse costs

• Solve
• Majorization-minimization
• Riemannian optimization
• M-ADMM

• Analyze
• Intrinsic Cramér-Rao analysis
• Asymptotic analysis of M-estimators

• Apply
• Array processing (detection, DoA)
• SAR image time-series
• Clustering w. subspaces as features
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Extensions

What if the data looks like this?

Some keywords: mixture of probabilistic PCA, subspace clustering, ...
44
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