Riemannian geometry in elliptical distributions

Arnaud Breloy, SLSIP Workshop, Rüdesheim, October 7th 2021

	 aaaaaaaaaa		

Some references

"Intrinsic Cramér–Rao bounds for scatter and shape matrices estimation in CES distributions," SPL, 2018. Arnaud Breloy, Guillaume Ginolhac, Alexandre Renaux, Florent Bouchard

"A Riemannian Framework for Low-Rank Structured Elliptical Models," TSP, 2021. Florent Bouchard, Arnaud Breloy, Guillaume Ginolhac, Alexandre Renaux, Frederic Pascal

"A Tyler-Type Estimator of Location and Scatter Leveraging Riemannian Optimization," ICASSP 2021. Antoine Collas, Florent Bouchard, Arnaud Breloy, Guillaume Ginolhac, Chengfang Ren, Jean-Philippe Ovarlez

"Probabilistic PCA from Heteroscedastic Signals: Geometric Framework and Application to Clustering" Antoine Collas, Florent Bouchard, Arnaud Breloy, Guillaume Ginolhac, Chengfang Ren, Jean-Philippe Ovarlez

Intro	Design 00000	Analyze DDDDDDDDDD	Solve aaaaaaaaaaaa	Apply	Refs
Motivatio	ns				

Represent or analyze the data ${f x}$ through some parameter ${m heta}$

Example with $p \simeq 7k$ genes of n = 63 patients with k = 4 classes [Khan2001] represented by

Intro	Design 00000	Analyze 000000000	Solve DDDDDDDDDD	Apply 0000	Refs
Statistical approach					

"Assume $\mathbf{x} \sim f(\mathbf{x}, \boldsymbol{\theta}),$ then do stuff"

- **Design** a meaningful pdf f and parameter $\boldsymbol{\theta}$
- Analyze model properties, performance bounds...
- Solve related optimization problems (MLEs, barycenters...)
- Apply the results to a task

Today's talk: What can Riemannian geometry bring to these steps?

00000		0000	

Outline

X Design

- Examples of f and $\boldsymbol{\theta}$ from elliptical distributions
- \cdot Remark that $heta \in \mathcal{M} \Longrightarrow$ pretext to define Riemannian tools

• Analyze

- · Intrinsic Cramér-Rao bounds
- 2 examples of interesting inequalities

• Solve

- Riemannian optimization and geodesic convexity
- 2 examples where numerical stability is improved

• Apply

• Clustering with Riemannian distances

	Design			
0000		0000000000	0000	

Elliptical distributions

Complex elliptically symmetric distributions (CES)

 $\mathbf{x} \sim \mathcal{CES}(\boldsymbol{\mu}, \boldsymbol{\Sigma}, g)$ if it has for pdf

$$f(\mathbf{x}) \propto |\mathbf{\Sigma}|^{-1} g\left((\mathbf{x} - \boldsymbol{\mu})^H \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right)$$

Scaled Gaussian distributions (CG)

 $\mathbf{x}_i \sim \mathcal{CN}(oldsymbol{\mu}, au_i \mathbf{\Sigma})$ where au_i is unknown deterministic

5

	Design			
0000		 aaaaaaaaaa	0000	

Structured parameter space as a manifold

Generally, the distribution parameter space, e.g.

- Covariance matrices: $\mathbf{\Sigma} \in \mathcal{H}_p^{++}$
- Product spaces: $\{\{\tau_i\}_{i=1}^n, \ \mu, \ \Sigma\} \in (\mathbb{R}^+)^n \times \mathbb{C}^p \times \mathcal{H}_p^{++}$

turn out to be a **manifold** \mathcal{M} (locally diffeomorphic to \mathbb{R}^d , with dim $(\mathcal{M}) = d$) $\forall \theta \in \mathcal{M}, \exists \mathcal{U}_{\theta} \subset \mathcal{M} \text{ and } \varphi_{\theta} : \mathcal{U}_{\theta} \to \mathbb{R}^d$, diffeomorphism

Intro DDDD	Design	Analyze DDDDDDDDDD	Solve DDDDDDDDDD	Apply	Refs

Riemannian manifolds (1/2)

Tangent space $T_{\theta}\mathcal{M}$ at point θ

- · Curve $\gamma:\mathbb{R}
 ightarrow\mathcal{M}$, $\gamma(0)= heta$
- Derivative: $\dot{\gamma}(0) = \lim_{t \to 0} \frac{\gamma(t) \gamma(0)}{t}$

Equip $T_{\theta}\mathcal{M}$ with a **Riemannian metric** $\langle \cdot, \cdot \rangle_{\theta}$ yields a **Riemannian manifold**

 $\cdot \langle \cdot, \cdot \rangle_{\theta} : (T_{\theta}\mathcal{M} \times T_{\theta}\mathcal{M}) \to \mathbb{R}$ inner product on $T_{\theta}\mathcal{M}$

(bilinear, symmetric, positive definite)

 $\cdot\,$ defines length and relative positions of tangent vectors

$$\|\xi\|_{\theta}^{2} = \langle \xi, \xi \rangle_{\theta} \qquad \qquad \alpha(\xi, \eta) = \frac{\langle \xi, \eta \rangle_{\theta}}{\|\xi\|_{\theta} \|\eta\|_{\theta}}$$

Design		

oly 100 Refs

Riemannian manifolds (2/2)

The Riemannian metric $\langle \cdot, \cdot \rangle_{\theta}$ induces **<u>a</u> geometry** for \mathcal{M}

Geodesics $\gamma : [0,1] \to \mathcal{M}$

- \cdot generalizes straight lines on $\mathcal M$
- curves on \mathcal{M} with zero acceleration: $\frac{D^2\gamma}{dt^2} = 0$

defined by $(\gamma(0),\dot{\gamma}(0))$ or $(\gamma(0),\gamma(1))$

operator $\frac{D^2}{dt^2}$ depends on \mathcal{M} and $\langle \cdot, \cdot \rangle$.

Riemannian distance dist
$$(\theta, \hat{\theta}) = \int_0^1 \|\dot{\gamma}(t)\|_{\gamma(t)} dt$$

distance = length of γ connecting θ and $\hat{\theta}$

	Design				
0000		0000000000	000000000	0000	

Which metric/geometry to chose ?

The Fisher information metric looks like an ideal driven by the model

Still, we can chose alternate metrics suited to some needs

- Availability (closed-form) of theoretical objects
- Interesting **invariance** properties
- Practical results of the chosen task

Metric	Geodesics	Distance	Retraction	Completeness	Invariance 1	Invariance 2	Perf.
(a)	×	×	✓	 ✓ 	×	✓	82%
(b)	1	×	1	1	1	×	86%
(c)	1	1	1	×	×	1	79%

Intro 0000	Design	Analyze DDDDDDDDDD	Solve	Apply 0000	Refs

Outline

• Design

- Examples of f and $\boldsymbol{\theta}$ from elliptical distributions
- \cdot Remark that $heta \in \mathcal{M} \Longrightarrow$ pretext to define Riemannian tools

X Analyze

- · Intrinsic Cramér-Rao bounds
- 2 examples of interesting inequalities

• Solve

- Riemannian optimization and geodesic convexity
- 2 examples where numerical stability is improved

• Apply

• Clustering with Riemannian distances

		Analyze			
0000	00000		aaaaaaaaaa	0000	

Cramér-Rao lower bound (CRLB)

CRLB: If $\mathbf{z} \sim f(\mathbf{z}, \boldsymbol{\theta})$, then for $\hat{\boldsymbol{\theta}}$ unbiased estimator of $\boldsymbol{\theta}$ as a vector

$$\mathbb{E}\left\{ (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}) (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta})^T \right\} \succeq \mathbf{F}^{-1}(\boldsymbol{\theta}) \quad \Rightarrow \quad \text{MSE} \geq \text{Tr}\left\{ \mathbf{F}^{-1}(\boldsymbol{\theta}) \right\}$$

with the **Fisher information matrix** $\mathbf{F}(\boldsymbol{\theta}) = -\mathbb{E}\left\{ \left. \frac{\partial^2 \ln f(\mathbf{z}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^T} \right|_{\boldsymbol{\theta}} \right\}$

Slepian-Bangs formula: if $\mathbf{x} \sim \mathcal{CN}(\boldsymbol{\mu}(\boldsymbol{\theta}), \boldsymbol{\Gamma}(\boldsymbol{\theta}))$

$$[\mathbf{F}(\boldsymbol{\theta})]_{ij} = 2\mathfrak{Re}\left\{ \left. \frac{\partial \boldsymbol{\mu}^{H}(\boldsymbol{\theta})}{\partial \theta_{i}} \right|_{\boldsymbol{\theta}} \boldsymbol{\Gamma}^{-1}(\boldsymbol{\theta}) \left. \frac{\partial \boldsymbol{\mu}(\boldsymbol{\theta})}{\partial \theta_{j}} \right|_{\boldsymbol{\theta}} \right\} + \mathrm{Tr}\left\{ \boldsymbol{\Gamma}^{-1}(\boldsymbol{\theta}) \left. \frac{\partial \boldsymbol{\Gamma}(\boldsymbol{\theta})}{\partial \theta_{i}} \right|_{\boldsymbol{\theta}} \boldsymbol{\Gamma}^{-1}(\boldsymbol{\theta}) \left. \frac{\partial \boldsymbol{\Gamma}(\boldsymbol{\theta})}{\partial \theta_{j}} \right|_{\boldsymbol{\theta}} \right\}$$

Extension to CES in [Besson13]

Intro 0000	Design	Analyze ○■○○○○○○○○	Solve	Apply 0000	Refs
"Constrai	ned" CRLB (c	CRLB)			

Constraints: If elements of θ are linked by some system

$$h_k(\theta_1, \theta_2, \dots, \theta_P) = 0, \ k \in \llbracket 1, M \rrbracket \iff \mathbf{h}(\boldsymbol{\theta}) = \mathbf{0}$$

 $\mathbf{F}(\boldsymbol{ heta})$ becomes singular \Rightarrow no proper CRLB

cCRLB: we still have [Gorman90]

$$\mathbb{E}\left\{ (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta})(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta})^T \right\} \succeq \mathbf{U}(\boldsymbol{\theta}) \left(\mathbf{U}^T(\boldsymbol{\theta}) \mathbf{F}(\boldsymbol{\theta}) \mathbf{U}(\boldsymbol{\theta}) \right)^{-1} \mathbf{U}^T(\boldsymbol{\theta})$$

with $\mathbf{U}(\boldsymbol{\theta})$ such that $\mathbf{H}(\boldsymbol{\theta})\mathbf{U}(\boldsymbol{\theta}) = \mathbf{0}$ and $\mathbf{U}^{T}(\boldsymbol{\theta})\mathbf{U}(\boldsymbol{\theta}) = \mathbf{I}_{M}$, and $\mathbf{H}(\boldsymbol{\theta}) = \frac{\partial \mathbf{h}(\boldsymbol{\theta})}{\boldsymbol{\theta}^{T}}\Big|_{\boldsymbol{\theta}}$

Intro 0000	Design	Analyze	Solve aaaaaaaaaaa	Apply DDDD	Refs
But what	if $ heta \in \mathcal{M}$?				

• Parameterization and constraints ?

- Difficult to have a system of coordinates
- Difficult (or impossible) to express constraints as $\mathbf{h}(\boldsymbol{ heta})$

e.g. subspaces e.g. PSD for \mathcal{H}_p^{++}

• Performance measure ?

- Can we bound a Riemannian distance rather than the MSE ?
- · Non-trivial function \Rightarrow no Jacobian

 \rightarrow We can turn to the framework of **intrinsic CRLB** (iCRLB)

		Analyze
0000	00000	

Solve

Apply

Perspective □ Refs

Riemannian framework of iCRLB

Definitions:

- $\cdot \ heta \in \mathcal{M}$ with tangent space $T_ heta \mathcal{M}$
- $\cdot \ \hat{ heta} \in \mathcal{M}$ estimate of heta
- $\langle \cdot, \cdot \rangle_{\theta}$ <u>chosen</u> Riemannian metric
- + $\operatorname{dist}(\cdot,\cdot)$ induced Riemannian distance
- $\{\xi_i\}$ corresponding orthonormal basis of $T_ heta \mathcal{M}$

Riemannian logarithm $\boldsymbol{\epsilon} = \log_{\theta} \hat{\theta} \in T_{\theta} \mathcal{M}$

- Points from θ to $\hat{\theta}$ with $||\log_{\theta} \hat{\theta}||_{\theta}^{2} = \mathrm{dist}^{2}(\theta, \hat{\theta})$
- \cdot Would be " $\hat{oldsymbol{ heta}}-oldsymbol{ heta}$ " in the Euclidean setup
- · In coordinates $[{m \epsilon}]_i = \langle \log_{ heta} \hat{ heta}, \xi_i
 angle_ heta$

Error measure = $\mathrm{dist}^2(\theta, \hat{\theta})$

Intro Design Analyze Solve Apply Perspectives Refs

Fisher information metric/matrix

Fisher information metric For $f({\mathbf{x}_k}; \theta)$ p.d.f. parameterized by $\theta \in \mathcal{M}$

$$\langle \xi, \xi \rangle_{\theta}^{\text{FIM}} = -\mathbb{E} \left[\left. \left. \frac{\mathrm{d}^2}{\mathrm{d}t^2} \ln f(\{\mathbf{x}_k\}; \theta + t\xi) \right|_{t=0} \right] \right]$$

Fisher information matrix represented in coordinates $\{\xi_i\}$ by

$$\left[\mathbf{F}\right]_{ij} = \langle \xi_i, \xi_j \rangle_{\theta}^{\mathrm{FIM}}$$

Remarks

- $\langle \cdot, \cdot \rangle_{\theta}^{\text{FIM}}$ defines a metric for $T_{\theta}\mathcal{M} \Rightarrow \text{information geometry}$ for \mathcal{M}
- Error measured from $\langle \cdot, \cdot \rangle_{ heta}$, which can be different

Intro 0000	Design	Analyze DDDDD D DDDDD	Solve 0000000000	Apply	Refs

Intrinsic CRLB

Intrinsic CRLB (iRCLB)

[Smitho5, Boumal14]

Assuming model $f({\mathbf{x}_k}; \boldsymbol{\theta})$ and unbiased estimator $\hat{\theta}$, we have

$$\mathbb{E}\left[(\log_{\theta} \hat{\theta})(\log_{\theta} \hat{\theta})^{H}\right] \succeq \mathbf{F}^{-1} - \underbrace{\frac{1}{3}\left(\mathbf{F}^{-1}\mathbf{R}_{m}\left(\mathbf{F}^{-1}\right) + \mathbf{R}_{m}\left(\mathbf{F}^{-1}\right)\mathbf{F}^{-1}\right) + \mathcal{O}(\lambda_{\max}(\mathbf{F}^{-1})^{2+1/2})}_{\mathbf{M}_{m}(\mathbf{F}^{-1})}$$

Riemannian curvature terms (cf. [Boumal14, Eq.6.6])

Remarks

• \mathbf{F}^{-1} depends on $\langle \cdot, \cdot
angle_{ heta} \Rightarrow$ iCRLB indeed changes w.r.t. d

"(·)⁻¹" inverse of a tensor (defined w.r.t. a metric)

- Bias terms + more about curvature in [Smitho5]
- Neglecting the curvature terms, we have in trace $\mathbb{E}\left\{\operatorname{dist}^{2}(\hat{\theta},\theta)\right\} \geq \operatorname{Tr}\left\{\mathbf{F}^{-1}\right\}$

	Analyze		
00000			000

Wrapping up

iCRLB cooking recipe

- 1. Compute $\langle \xi, \xi \rangle_{\theta}^{\text{FIM}} = -\mathbb{E} \left[\left. \frac{\mathrm{d}^2}{\mathrm{d}t^2} \ln f(\{\mathbf{x}_k\}; \theta + t\xi) \right|_{t=0} \right]$ and polarization for $\langle \xi_i, \xi_j \rangle_{\theta}^{\text{FIM}}$
- 2. Chose the error metric $\langle \cdot, \cdot \rangle_{\theta} \longrightarrow \begin{cases} \text{ error distance dist} \\ \text{ orthonormal basis } \{\xi_i\} \text{ of } T_{\theta}\mathcal{M} \end{cases}$
- 3. Compute the Fisher information matrix: $[\mathbf{F}]_{ij} = \langle \xi_i, \xi_j \rangle_{ heta}^{\mathrm{FIM}}$
- 4. Bound the expected distance as $\mathbb{E}\left\{\operatorname{dist}^{2}(\hat{\theta}, \theta)\right\} \geq \operatorname{Tr}\left\{\mathbf{F}^{-1}\right\}$

Interest?

- Bounding other distances: neat formulas, reveals unexpected things (intrinsic bias)
- Parameterization from $T_{ heta}\mathcal{M}
 ightarrow$ useful even in the Euclidean case!

Intro Design Analyze Solve Apply Perspectives Refs acada acad

Example 1: iCRLB for covariance matrix estimation in CES (1/2)

Model $\mathbf{x} \sim C\mathcal{ES}(\mathbf{0}, \boldsymbol{\Sigma}, g)$ with pdf $f(\mathbf{x}) \propto |\boldsymbol{\Sigma}|^{-1}g(\mathbf{x}^{H}\boldsymbol{\Sigma}^{-1}\mathbf{x})$, and representation

 $\mathbf{x} \stackrel{d}{=} \sqrt{\mathcal{Q}} \mathbf{\Sigma}^{1/2} \mathbf{u} \quad \text{with} \begin{cases} \mathbf{u} \text{ uniformly distributed on the unit sphere } \mathbf{u} \sim \mathcal{U}(\mathbb{C}S^p) \\ \mathcal{Q} \text{ independent modular variate, pdf related to } g \end{cases}$

 $\begin{array}{ll} \textbf{Manifold } \boldsymbol{\Sigma} \in \mathcal{H}_p^{++} \text{ with tangent space } & T_{\boldsymbol{\Sigma}} \mathcal{H}_p^{++} = \mathcal{H}_p \\ & \text{(Hermitian pd matrices)} & \text{(Hermitian matrices)} \end{array}$

Error metric: "natural" Riemannian metric and distance for \mathcal{H}_p^{++}

 $\langle \xi_i, \xi_j \rangle_{\Sigma} = \operatorname{Tr} \left\{ \Sigma^{-1} \xi_i \Sigma^{-1} \xi_j \right\}$ inducing $\operatorname{dist}^2_{\mathcal{H}^{++}_r}(\Sigma, \hat{\Sigma}) = ||\log \Sigma^{-1/2} \hat{\Sigma} \Sigma^{-1/2}||_F^2$

Intro Design Analyze Solve Apply Perspectives Refs

Example 1: iCRLB for covariance matrix estimation in CES (2/2)

Fisher information metric for CES

Let $\{\mathbf{x}_i\}_{i=1}^n$ in \mathbb{C}^p with $\mathbf{x} \sim \mathcal{CES}(\mathbf{0}, \mathbf{\Sigma}, g)$, then

$$\langle \xi_i, \xi_j \rangle_{\mathbf{\Sigma}}^{\mathrm{FIM}} = n \alpha_g \operatorname{Tr} \left\{ \mathbf{\Sigma}^{-1} \xi_i \mathbf{\Sigma}^{-1} \xi_j \right\} + n \beta_g \operatorname{Tr} \left\{ \mathbf{\Sigma}^{-1} \xi_i \right\} \operatorname{Tr} \left\{ \mathbf{\Sigma}^{-1} \xi_j \right\}$$

with
$$\alpha_g = 1 - \frac{\mathbb{E}[Q^2 \phi'(Q)]}{M(M+1)}$$
 and $\beta_g = \alpha - 1$ using $\phi(t) = g'(t)/g(t)$

iCRLB for Σ

Let $\{\mathbf{z}_i\}_{i=1}^n$ in \mathbb{C}^p with $\mathbf{z} \sim \mathcal{CES}(\mathbf{0}, \mathbf{\Sigma}, g)$

$$\mathbb{E}\left[\operatorname{dist}^{2}_{\mathcal{H}_{p}^{++}}\left(\hat{\boldsymbol{\Sigma}},\boldsymbol{\Sigma}\right)\right] \geq \frac{1}{n}\left(\frac{p^{2}-1}{\alpha_{g}} + \frac{1}{\alpha_{g}(p+1)-p}\right)$$

aka "affine invariant"

		Analyze			
0000	00000		000000000	0000	

Example 2: spiked model (PCA) in CES

Model: $\mathbf{x} \sim C\mathcal{ES}(\mathbf{0}, \mathbf{H} + \mathbf{I}, g)$, with $\mathbf{H} \in \mathcal{H}_{p,k}^+$ (H-psd of rank k) Manifold: $\mathbf{H} = \mathbf{U}\Sigma\mathbf{U}^H \in \mathcal{H}_{p,k}^+$ as $(\operatorname{St}(p,k) \times \mathcal{H}_k^{++})/\mathcal{U}_k$

Error metric:

$$\langle \bar{\xi}, \bar{\eta} \rangle_{\bar{\theta}} = \underbrace{\mathfrak{Re}(\mathrm{Tr}(\xi_{\mathbf{U}}^{H}(\mathbf{I}_{p} - \frac{1}{2}\mathbf{U}\mathbf{U}^{H})\boldsymbol{\eta}_{\mathbf{U}}))}_{\text{canonical on St}(p,k)} + \underbrace{\alpha \mathrm{Tr}(\boldsymbol{\Sigma}^{-1}\boldsymbol{\xi}_{\boldsymbol{\Sigma}}\boldsymbol{\Sigma}^{-1}\boldsymbol{\eta}_{\boldsymbol{\Sigma}}) + \beta \mathrm{Tr}(\boldsymbol{\Sigma}^{-1}\boldsymbol{\xi}_{\boldsymbol{\Sigma}})\mathrm{Tr}(\boldsymbol{\Sigma}^{-1}\boldsymbol{\eta}_{\boldsymbol{\Sigma}})}_{\text{affine invariant on }\mathcal{H}_{k}^{++}}$$

iCRLB for subspace

Let $\{\mathbf{z}_i\}_{i=1}^n$ in \mathbb{C}^p with $\mathbf{z} \sim \mathcal{CES}(\mathbf{0}, \mathbf{U} \operatorname{diag}(\{\sigma_r\}_{r=1}^k)\mathbf{U}^H + \mathbf{I}, g)$

$$\mathbb{E}\left[\operatorname{dist}^{2}_{\mathcal{G}_{p,k}}\left(\operatorname{span}(\hat{\mathbf{U}}),\operatorname{span}(\mathbf{U})\right)\right] \geq \frac{p-k}{n\alpha_{g}}\sum_{r=1}^{k}\frac{1+\sigma_{r}}{\sigma_{r}^{2}}$$

Intro 0000	Design	Analyze	Solve aaaaaaaaaaa	Apply 0000	Refs
Outline					

• Design

- Examples of f and $\boldsymbol{\theta}$ from elliptical distributions
- \cdot Remark that $heta \in \mathcal{M} \Longrightarrow$ pretext to define Riemannian tools

• Analyze

- · Intrinsic Cramér-Rao bounds
- 2 examples of interesting inequalities

X Solve

- Riemannian optimization and geodesic convexity
- 2 examples where numerical stability is improved

• Apply

• Clustering with Riemannian distances

Intro DDDD	Design DDDDDD	Analyze 000000000	Solve ■□□□□□□□□□	Apply 0000		Refs
Riemannian optimization						

$\underset{\theta \in \mathcal{M}}{\text{minimize}} \quad f(\theta)$

Riemannian optimization: a framework for optimization on \mathcal{M} equipped with $\langle \cdot, \cdot \rangle$.

Descent direction of f at θ :

 $\xi \in T_{\theta}\mathcal{M}, \quad \mathrm{D}f(\theta)[\xi] < 0$

Riemannian gradient of f at θ :

 $\langle \operatorname{grad} f(\theta), \xi \rangle_{\theta} = \operatorname{D} f(\theta)[\xi]$

Intro 0000	Design	Analyze	Solve	Apply	Refs
Riemann	ian optimiz	zation			[?]

Main ingredients

- Descent direction: $\xi \in T_{\theta}\mathcal{M}$ so that $\langle \operatorname{grad} f(\theta), \xi \rangle_{\theta} < 0$
- Retraction of ξ on ${\mathcal M}$ (smooth mapping)

Flexibility: metric, retraction, descent method (gradient, conjugate gradient, BFGS...)

			Solve		
0000	00000	0000000000		0000	

			Solve		
0000	00000	0000000000		0000	

		Solve		
0000			0000	

		Solve		
0000	0000000000		0000	

Intro Design Analyze **Solve** Apply Perspectives Refs

Geodesic convexity (g-convexity)

f is g-convex if $\forall \theta_1, \theta_2 \in \mathcal{M}$, f is convex on geodesic $\gamma(t)$, i.e $f(\gamma(t)) \leq t f(\theta_1) + (1 - t) f(\theta_2)$

If so, then any local minimizer is a global minimizer.

Example: CES log-likelihoods

$$\mathcal{L}(\boldsymbol{\Sigma}) = \sum_{i=1}^{n} \ln g \left(\mathbf{x}_{i}^{H} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i} \right) + n \ln |\boldsymbol{\Sigma}|$$

are *g*-convex following the geodesics $\boldsymbol{\Sigma}(t) = \boldsymbol{\Sigma}_{1}^{1/2} \left(\boldsymbol{\Sigma}_{1}^{-1/2} \boldsymbol{\Sigma}_{2} \boldsymbol{\Sigma}_{1}^{-1/2} \right)^{t} \boldsymbol{\Sigma}_{1}^{1/2}$

has been useful to prove uniqueness of (regularized) M-estimators

		Solve		
0000	00000			

Example 1: robust mean and covariance estimation (1/3)

Jointly estimate μ and Σ for $\mathbf{x} \sim \mathcal{CES}\left(\mu, \Sigma\right)$

*M***-estimators** of location and scatter

$$\boldsymbol{\mu} = \left(\sum_{i=1}^{n} u_1(t_i)\right)^{-1} \sum_{i=1}^{n} u_1(t_i) \mathbf{x}_i \qquad \boldsymbol{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} u_2(t_i) (\mathbf{x}_i - \boldsymbol{\mu}) (\mathbf{x}_i - \boldsymbol{\mu})^H$$

where $t_i \stackrel{\Delta}{=} (\mathbf{x}_i - \boldsymbol{\mu})^H \boldsymbol{\Sigma}^{-1} (\mathbf{x}_i - \boldsymbol{\mu})$, and u_1, u_2 respect conditions in [Maronna76]

Tyler's estimator

$$\boldsymbol{\iota} = \left(\sum_{i=1}^{n} \frac{1}{\sqrt{t_i}}\right)^{-1} \sum_{i=1}^{n} \frac{\mathbf{x}_i}{\sqrt{t_i}} \qquad \boldsymbol{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} \frac{(\mathbf{x}_i - \boldsymbol{\mu})(-\boldsymbol{\mu})^H}{t_i}$$

Possible fixed-point issues when $t_i \simeq 0$ 26

		Solve		
0000	00000			

Example 1: robust mean and covariance estimation (2/3)

Alternatively when $\mu = 0$: Tyler's estimator \Leftrightarrow MLE for scaled Gaussian $\mathbf{x}_i \sim \mathcal{CN}(\mathbf{0}, \tau_i \Sigma)$

Transposed to non-zero mean $\mathbf{x}_i \sim \mathcal{CN}(\boldsymbol{\mu}, \tau_i \boldsymbol{\Sigma})$

$$\underset{\boldsymbol{\mu},\{\tau_i\}_{i=1}^n,\boldsymbol{\Sigma}}{\text{maximize}} \quad \sum_{i=1}^n \left[\ln |\tau_i \boldsymbol{\Sigma}| + \frac{(\mathbf{x}_i - \boldsymbol{\mu})^H \boldsymbol{\Sigma}^{-1} (\mathbf{x}_i - \boldsymbol{\mu})}{\tau_i} \right]$$

yields

$$\boldsymbol{\mu} = \left(\sum_{i=1}^{n} \frac{1}{t_i}\right)^{-1} \sum_{i=1}^{n} \frac{\mathbf{x}_i}{t_i} \qquad \boldsymbol{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} \frac{(\mathbf{x}_i - \boldsymbol{\mu})(-\boldsymbol{\mu})^{E_i}}{t_i}$$

slightly different but fixed-point iterations diverge in practice!

Example 1: robust mean and covariance estimation (3/3)

Product manifold
$$\mathcal{M}_{p,n} \in \mathbb{C}^p \times (\mathbb{R}^+_{\star})^n \times \mathcal{SH}_p^{++}$$
 with decoupled metric
 $(\mathcal{H}_p^{++} \cap \det = 1)$
 $\langle \xi, \eta \rangle_{\theta}^{\mathcal{M}_{p,n}} = \underbrace{\mathfrak{Re}\{\xi_{\mu}^{H}\eta_{\mu}\}}_{\text{canonical on } \mathbb{C}^p} + \underbrace{(\tau^{\odot -1} \odot \xi_{\tau})^T (\tau^{\odot -1} \odot \eta_{\tau})}_{\text{canonical on } (\mathbb{R}^+_{\star})^n} + \underbrace{\operatorname{Tr}(\Sigma^{-1}\xi_{\Sigma}\Sigma^{-1}\eta_{\Sigma})}_{\text{Natural Riem. on } \mathcal{SH}_p^{++}}$

And resulting:

- Riemannian gradient descent
- Surprisingly stable and accurate estimator
- Still... slow convergence
- Faster with information geometry to appear!

		Solve		
0000				

Example 2: robust estimator for spiked models in CES (1/2)

Spiked Tyler's estimator

$$\begin{array}{ll} \underset{\boldsymbol{\Sigma}}{\text{minimize}} & \frac{p}{n} \sum_{i=1}^{n} \ln \left(\mathbf{x}_{i}^{H} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i} \right) + \ln |\boldsymbol{\Sigma}| \\ \text{subject to} & \boldsymbol{\Sigma} = \mathbf{H} + \sigma^{2} \mathbf{I}, \text{ with } \mathbf{H} \in \mathcal{H}_{p,k}^{+} \end{array}$$

Existing MM algorithm [Sun16]

1. Usual fixed point iteration

$$\boldsymbol{\Sigma}_{t+1/2} = \frac{p}{n} \sum_{i=1}^{n} \frac{\mathbf{x}_i \mathbf{x}_i^H}{\mathbf{x}_i^H \boldsymbol{\Sigma}_t^{-1} \mathbf{x}_i}$$

2. Projection on the structured set

$$\boldsymbol{\Sigma}_{t+1} = \mathcal{P}_{\mathcal{H}_{p,k}^+} \left(\boldsymbol{\Sigma}_{t+1/2} \right)$$

where $\mathcal{P}_{\mathcal{H}_{p,k}^+}$ averages the last p-k eigenvalues ${\rm (SVD)}$

can diverge with small n

		Solve		
0000	00000		0000	

Example 2: robust estimator for spiked models in CES (2/2)

Riemannian optimization for

 $\underset{\mathbf{H}\in\mathcal{H}_{p,k}^+}{\text{minimize}} \quad \mathcal{L}_{\mathrm{Ty}}(\mathbf{H}+\mathbf{I})$

with $\mathbf{H} = \mathbf{U} \mathbf{\Sigma} \mathbf{U}^H \in (\mathrm{St}(p,k) \times \mathcal{H}_k^{++})/\mathcal{U}_k$

using the metric

$$\overline{\xi}, \overline{\eta}\rangle_{\overline{\theta}} = \underbrace{\mathfrak{Re}(\mathrm{Tr}(\xi_{\mathbf{U}}^{H}(\mathbf{I}_{p} - \frac{1}{2}\mathbf{U}\mathbf{U}^{H})\boldsymbol{\eta}_{\mathbf{U}}))}_{\text{canonical on St}(p,k)} + \underbrace{\alpha\mathrm{Tr}(\boldsymbol{\Sigma}^{-1}\boldsymbol{\xi}_{\boldsymbol{\Sigma}}\boldsymbol{\Sigma}^{-1}\boldsymbol{\eta}_{\boldsymbol{\Sigma}}) + \beta\mathrm{Tr}(\boldsymbol{\Sigma}^{-1}\boldsymbol{\xi}_{\boldsymbol{\Sigma}})\mathrm{Tr}(\boldsymbol{\Sigma}^{-1}\boldsymbol{\eta}_{\boldsymbol{\Sigma}})}_{\text{affine invariant on }\mathcal{H}_{\nu}^{++}}$$

IntroDesignAnalyzeSolveApplyPerspectivesRefsDD

Numerical illustrations: *t*-distribution p = 16, k = 8, SNR $\simeq 15$ dB

Intro 0000	Design 00000	Analyze DDDDDDDDDD	Solve □□□□□□□□□□	Apply	Refs

Outline

• Design

- Examples of f and $\boldsymbol{\theta}$ from elliptical distributions
- \cdot Remark that $heta \in \mathcal{M} \Longrightarrow$ pretext to define Riemannian tools

• Analyze

- · Intrinsic Cramér-Rao bounds
- 2 examples of interesting inequalities

• Solve

- Riemannian optimization and geodesic convexity
- 2 examples where numerical stability is improved

X Apply

• Clustering with Riemannian distances

Intro DDDD	Design	Analyze DDDDDDDDDD	Solve aaaaaaaaaaa	Apply	Refs
Clustering	g problem				

Mixture model: observations follow (\mathbf{x} |class k) ~ $f(x, \theta_k)$ with K possible classes

Clustering: from **unlabeled** data $\{\mathbf{x}_i\}_{i=1}^n$ find the partition $\{\{\mathbf{x}_i^k\}_{i=1}^{n_k}\}_{k=1}^K$

Issues:

- Statistical ideal would be the **EM algorithm** \rightarrow no time for that!
- More accurate model could involve $f_k \rightarrow$ need for robustness to mismatches
- Elements in θ_k might be non-discriminating

A standard solution is to cluster intermediate **features**

(aka descriptors)

Feature clustering pipeline with a geometric twist

Riemannian approach for $\theta \in \mathcal{M}$: **transpose** clusterings algorithm using

- **Information geometry** of model $\mathbf{x} \sim f(x, \theta)$
- Distances $\operatorname{dist}^2(\theta_i, \theta_j)$ and Riemannian means $\operatorname{argmin} \sum_{i=1}^j \operatorname{dist}^2(\theta, \theta_i)$

			Apply	
0000	00000	aaaaaaaaaa		

An example on Indian pines data set

Plain K-means++, compared to Riemmanian counterparts from two models:

Centered Gaussian (GMM)

- · $\mathbf{x}_i \sim \mathcal{CN}(\mathbf{0}, \mathbf{\Sigma})$
- + θ = covariance matrix Σ
- Natural distance dist $_{\mathcal{H}_{n}^{+}+}$

Probabilistic PCA with SG signals

· $\mathbf{x}_i \sim \mathcal{CN}(\mathbf{0}, \tau_i \mathbf{U} \mathbf{U}^{\mathbf{H}} + \mathbf{I})$

 $\mathcal{H}_{-}^{++}: OA = 45.2\%$

- + heta = subspace $\operatorname{span}(\mathbf{U})$ + textures $\{ au_i\}_{i=1}^n$
- Decoupled distance on $\mathrm{Gr}_p^k imes \mathbb{R}^n$

35

Intro DDDD	Design DDDDDD	Analyze 000000000	Solve	Apply	Refs

Outline

• Design

- Examples of f and $\boldsymbol{\theta}$ from elliptical distributions
- \cdot Remark that $heta \in \mathcal{M} \Longrightarrow$ pretext to define Riemannian tools

• Analyze

- · Intrinsic Cramér-Rao bounds
- 2 examples of interesting inequalities

• Solve

- Riemannian optimization and geodesic convexity
- 2 examples where numerical stability is improved

• Apply

• Clustering with Riemannian distances

				Perspectives	
0000	00000	 	0000		

Perspectives in regularization

• Intrinsic bias $\mathbf{b}(\hat{\theta}) = \mathbb{E}\left[\log_{\theta} \hat{\theta}\right] \rightarrow \text{counter-intuitive bias-variance paradigm}$

$$\mathbf{b}(\boldsymbol{\Sigma}_{\mathrm{SCM}}) = \mathbb{E}\left[\log_{\boldsymbol{\Sigma}}\boldsymbol{\Sigma}_{\mathrm{SCM}}\right] = \boldsymbol{\Sigma}^{1/2} \mathbb{E}\left[\log(\boldsymbol{\Sigma}^{-1/2}\boldsymbol{\Sigma}_{\mathrm{SCM}}\boldsymbol{\Sigma}^{-1/2})\right] \boldsymbol{\Sigma}^{1/2} = \mathsf{not \ zero!}$$

• Geodesic shrinkage or not?

$$\boldsymbol{\Sigma}_g(t) = \mathbf{T}_1^{1/2} \left(\mathbf{T}_1^{-1/2} \hat{\boldsymbol{\Sigma}} \mathbf{T}_1^{-1/2} \right)^t \mathbf{T}_1^{1/2} \qquad \text{versus} \qquad \boldsymbol{\Sigma}_L(t) = t \hat{\boldsymbol{\Sigma}} + (1-t) \mathbf{T}_L^{1/2} \mathbf{T}_L^$$

• Can we do **Stein's type** regularization (shrink eigenvalues) for $\mathbb{E}\left[\operatorname{dist}_{\mathcal{H}_p^{++}}(\tilde{\Sigma}, \Sigma)\right]$?

Intro nnnn	Design	Analyze nnnnnnnnn	Solve	Apply DDDD	Refs

References

On CRLBs with constraints

"Lower bounds for parametric estimation with constraints," IT, 1990 John D. Gorman, Alfred O. Hero.

"A simple derivation of the constrained multiple parameter Cramér-Rao bound," TSP, 1993 Thomas L. Marzetta

"On the Cramér-Rao bound under parametric constraints," SPL, 1998 Petre Stoica, Boon Chong Ng

On iCRLBs

"Covariance, subspace, and intrinsic Cramér-Rao bounds," TSP, 2005 Steven T. Smith

"On intrinsic Cramér-Rao bounds for Riemannian submanifolds and quotient manifolds," TSP, 2013 Nicolas Boumal

"Optimization and estimation on manifolds," Doctoral dissertation, Catholic University of Louvain Nicolas Boumal

Intro DDDD	Design 00000	Analyze DDDDDDDDDD	Solve aaaaaaaaaaa	Apply 0000	Refs
Reference	es				i

On Riemannian optimization

"Optimization algorithms on matrix manifolds," Princeton University Press, 2009 Pierre-Antoine Absil, Robert Mahony, Rodolphe Sepulchre

"An introduction to optimization on smooth manifolds," available online, 2020 Nicolas Boumal

On Riemannian geometry for low-rank PSD matrices

"Riemannian metric and geometric mean for positive semidefinite matrices of fixed rank," SIMAX, 2009 Silvere Bonnabel and Rodolphe Sepulchre.

"Regression on fixed-rank positive semidefinite matrices: a Riemannian approach," JMLR, 2011 Gilles Meyer, Silvere Bonnabel, Rodolphe Sepulchre

"A Riemannian geometry with complete geodesics for the set of positive semidefinite matrices of fixed rank," IMAJNA, 2012 Bart Vandereycken, Pierre-Antoine Absil, Stefan Vandewalle

"Quotient geometry with simple geodesics for the manifold of fixed-rank positive-semidefinite matrices. Technical," SIMAX, 2019 Estelle Massart, Pierre-Antoine Absil

Intro DDDD	Design	Analyze DDDDDDDDDD	Solve 000000000	Apply		Refs
References						
On CES						

"Complex elliptically symmetric distributions: Survey, new results and applications," TSP, 2012 Esa Ollila, David E. Tyler, Visa Koivunen, H. Vincent Poor

"Geodesic convexity and covariance estimation," TSP, 2012

"Unified framework to regularized covariance estimation in scaled gaussian models," TSP, 2012 Ami Wiesel

"Regularized M-estimators of scatter matrix," TSP, 2014 Esa Ollila, David E. Tyler

Work presented in this talk

"Intrinsic Cramér–Rao bounds for scatter and shape matrices estimation in CES distributions," SPL, 2018. Arnaud Breloy, Guillaume Ginolhac, Alexandre Renaux, Florent Bouchard

"A Riemannian Framework for Low-Rank Structured Elliptical Models," TSP, 2021. Florent Bouchard, Arnaud Breloy, Guillaume Ginolhac, Alexandre Renaux, Frederic Pascal

"A Tyler-Type Estimator of Location and Scatter Leveraging Riemannian Optimization," ICASSP 2021. Antoine Collas, Florent Bouchard, Arnaud Breloy, Guillaume Ginolhac, Chengfang Ren, Jean-Philippe Ovarlez "Probabilistic PCA from Heteroscedastic Signals: Geometric Framework and Application to Clustering" Antoine Collas, Florent Bouchard, Arnaud Breloy, Guillaume Ginolhac, Chengfang Ren, Jean-Philippe Ovarlez