Riemannian and information geometry in signal processing and machine learning

Part I: Riemannian Geometry and Optimization

Florent Bouchard, Arnaud Breloy and Ammar Mian
N
Université

- Paris Nanterre

Outline

(1) Preliminaries: matrix function differentiation
(2) Riemannian geometry
(3) Riemannian optimization
(4) Numerical considerations
(5) Conclusion

Outline

(1) Preliminaries: matrix function differentiation
(2) Riemannian geometry
(3) Riemannian optimization
(4) Numerical considerations

5 Conclusion

Matrix function differentiation - reference

Nicholas J Higham. Functions of matrices: theory and computation. SIAM, 2008

Matrix function differentiation - definition

directional derivative (Fréchet)

$f: \mathbb{R}^{p \times q} \rightarrow \mathbb{R}^{m \times n}$ differentiable at \boldsymbol{X} if $\exists \mathrm{D} f(\boldsymbol{X}): \mathbb{R}^{p \times q} \rightarrow \mathbb{R}^{m \times n}$ linear mapping such that

$$
\lim _{\|\boldsymbol{\xi}\|_{2} \rightarrow 0} \frac{\| f\left(\boldsymbol{X}+\boldsymbol{\xi}-f(\boldsymbol{X})-\mathrm{D} f(\boldsymbol{X})[\boldsymbol{\xi}] \|_{2}\right.}{\|\boldsymbol{\xi}\|_{2}}=0 \quad \text { exists }
$$

If $\mathrm{D} f(\boldsymbol{X})$ exists, it is unique
Equivalently, $\quad D f(\boldsymbol{X})[\xi]=f(\boldsymbol{X}+\xi)-f(\boldsymbol{X})+o(\|\xi\|)$

Matrix function differentiation - definition

directional derivative (Gateaux)

if f differentiable at \boldsymbol{X}, then $\forall \boldsymbol{\xi}$,

$$
D f(\boldsymbol{X})[\xi]=\left.\frac{d}{d t}\right|_{t=0} f(\boldsymbol{X}+t \xi)=\lim _{t \rightarrow 0} \frac{f(\boldsymbol{X}+t \boldsymbol{\xi})-f(\boldsymbol{X})}{t}
$$

\. $\left.\frac{d}{d t}\right|_{t=0} f(X+t \xi)$ not linear $\Rightarrow f$ not differentiable

Matrix function differentiation - definition

Examples

$f(\boldsymbol{X})=\boldsymbol{X}^{2}$

$$
f(\boldsymbol{X}+\boldsymbol{\xi})=(\boldsymbol{X}+\boldsymbol{\xi})^{2}=\boldsymbol{X}^{2}+\boldsymbol{X} \boldsymbol{\xi}+\boldsymbol{\xi} \boldsymbol{X}+\boldsymbol{\xi}^{2}=f(\boldsymbol{X})+\boldsymbol{X} \boldsymbol{\xi}+\boldsymbol{\xi} \boldsymbol{X}+\mathrm{o}(\|\boldsymbol{\xi}\|)
$$

$\mathrm{D} f(\boldsymbol{X})[\boldsymbol{\xi}]=\boldsymbol{X} \boldsymbol{\xi}+\boldsymbol{\xi} \boldsymbol{X}$
$f(\boldsymbol{X})=\log \operatorname{det}(\boldsymbol{X})$
$f(\boldsymbol{X}+\boldsymbol{\xi})=\log \operatorname{det}(\boldsymbol{X}+\boldsymbol{\xi})=\log \operatorname{det}(\boldsymbol{X})+\log \operatorname{det}\left(\boldsymbol{I}+\boldsymbol{X}^{-1} \boldsymbol{\xi}\right)$

$$
\begin{aligned}
& \operatorname{det}(\boldsymbol{I}+\boldsymbol{Y})=1+\operatorname{tr}(\boldsymbol{Y})+o(\|\boldsymbol{Y}\|) \\
& \log (1+t)=t+o(t)
\end{aligned}
$$

$\mathrm{D} f(\boldsymbol{X})[\xi]=\operatorname{tr}\left(\boldsymbol{X}^{-1} \xi\right)$

Matrix function differentiation - Vectorization

Vectorization

$\mathrm{D} f(\boldsymbol{X}): \mathbb{R}^{p \times q} \rightarrow \mathbb{R}^{m \times n}$ linear mapping. Thus, $\exists \boldsymbol{M}_{\boldsymbol{X}} \in \mathbb{R}^{p q \times m n}$ such that

$$
\operatorname{vec}(\mathrm{D} f(\boldsymbol{X})[\boldsymbol{\xi}])=\boldsymbol{M}_{\boldsymbol{X}} \operatorname{vec}(\boldsymbol{\xi})
$$

M_{X} can usually be found with:

$$
\begin{aligned}
\operatorname{vec}(\boldsymbol{A B C}) & =\left(\boldsymbol{C}^{T} \otimes \boldsymbol{A}\right) \operatorname{vec}(\boldsymbol{B}) \\
\operatorname{tr}(\boldsymbol{A B}) & =\operatorname{vec}(\boldsymbol{A})^{T} \operatorname{vec}(\boldsymbol{B})
\end{aligned}
$$

Matrix function differentiation - Vectorization

Special case - $f: \mathbb{R}^{p \times q} \rightarrow \mathbb{R}$

$$
\exists \boldsymbol{G}_{\boldsymbol{X}}, \quad \mathrm{D} f(\boldsymbol{X})[\boldsymbol{\xi}]=\operatorname{tr}\left(\mathbf{G}_{\boldsymbol{X}}^{\top} \boldsymbol{\xi}\right)
$$

$$
\text { since } \operatorname{tr}(\boldsymbol{A B})=\operatorname{vec}(\boldsymbol{A})^{\top} \operatorname{vec}(\boldsymbol{B})
$$

Special case $-f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$
Jacobian at $\boldsymbol{x}: \quad \boldsymbol{J}_{\boldsymbol{x}} \in \mathbb{R}^{n \times p}$ such that $\left(\boldsymbol{J}_{\boldsymbol{x}}\right)_{i j}=\frac{\partial f_{i}}{\partial x_{j}}$
Directional derivative: $\quad \mathrm{D} f(\boldsymbol{x})[\xi]=\boldsymbol{J}_{\mathbf{x}} \cdot \boldsymbol{\xi}$

Matrix function differentiation - properties

Sum property

$g: \mathbb{R}^{p \times q} \rightarrow \mathbb{R}^{m \times n}, h: \mathbb{R}^{p \times q} \rightarrow \mathbb{R}^{m \times n}$ differentiable functions
$f=\alpha g+\beta h$ differentiable and

$$
\mathrm{D} f(\boldsymbol{X})[\boldsymbol{\xi}]=\alpha \mathrm{D} g(\boldsymbol{X})[\boldsymbol{\xi}]+\beta \mathrm{D} h(\boldsymbol{X})[\boldsymbol{\xi}]
$$

Matrix function differentiation - properties

Product property

$g: \mathbb{R}^{p \times q} \rightarrow \mathbb{R}^{n \times n}, h: \mathbb{R}^{p \times q} \rightarrow \mathbb{R}^{n \times n}$ differentiable functions
$f=g \cdot h$ differentiable and

$$
\mathrm{D} f(\boldsymbol{X})[\boldsymbol{\xi}]=g(\boldsymbol{X}) \cdot \mathrm{D} h(\boldsymbol{X})[\boldsymbol{\xi}]+\mathrm{D} g(\boldsymbol{X})[\boldsymbol{\xi}] \cdot h(\boldsymbol{X})
$$

Matrix function differentiation - properties

Examples

$$
g(\boldsymbol{X})=h(\boldsymbol{X})=\boldsymbol{X} \quad f(\boldsymbol{X})=\boldsymbol{X}^{2} \quad \mathrm{D} g(\boldsymbol{X})[\boldsymbol{\xi}]=\mathrm{D} h(\boldsymbol{X})[\boldsymbol{\xi}]=\boldsymbol{\xi}
$$

$\mathrm{D} f(\boldsymbol{X})[\boldsymbol{\xi}]=\boldsymbol{X} \boldsymbol{\xi}+\boldsymbol{\xi} \boldsymbol{X}$

$$
\begin{array}{cc}
g(\boldsymbol{X})=\boldsymbol{X} \quad h(\boldsymbol{X})=\boldsymbol{X}^{-1} & f(\boldsymbol{X})=\boldsymbol{I} \\
\mathrm{D} g(\boldsymbol{X})[\boldsymbol{\xi}]=\boldsymbol{\xi} & \mathrm{D} f(\boldsymbol{X})[\boldsymbol{\xi}]=\mathbf{0} \\
& \boldsymbol{\xi} \boldsymbol{X}^{-1}+\boldsymbol{X} \mathrm{D} h(\boldsymbol{X})[\xi]=\mathbf{0} \\
\mathrm{D} h(\boldsymbol{X})[\xi]=-\boldsymbol{X}^{-1} \xi \boldsymbol{X}^{-1}
\end{array}
$$

Matrix function differentiation - properties

Composition property

$g: \mathbb{R}^{p \times q} \rightarrow \mathbb{R}^{m \times n}, h: \mathbb{R}^{k \times \ell} \rightarrow \mathbb{R}^{p \times q}$ differentiable functions
$f=g \circ h$ differentiable and

$$
\mathrm{D} f(\boldsymbol{X})[\xi]=\mathrm{D} g(h(\boldsymbol{X}))[\mathrm{D} h(\boldsymbol{X})[\xi]]
$$

Matrix function differentiation - properties

Example

$g(\boldsymbol{X})=\boldsymbol{X}^{2} \quad h(\boldsymbol{X})=\boldsymbol{X}^{1 / 2} \quad f(\boldsymbol{X})=\boldsymbol{X}$
$\mathrm{D} \boldsymbol{g}(\boldsymbol{X})[\boldsymbol{\xi}]=\boldsymbol{X} \boldsymbol{\xi}+\boldsymbol{\xi} \boldsymbol{X}$
$\mathrm{D} f(\boldsymbol{X})[\xi]=\boldsymbol{\xi}$

$$
\boldsymbol{X}^{1 / 2} \operatorname{D} h(\boldsymbol{X})[\boldsymbol{\xi}]+\operatorname{D} h(\boldsymbol{X})[\boldsymbol{\xi}] \boldsymbol{X}^{1 / 2}=\boldsymbol{\xi}
$$

Thus, $\mathrm{D} h(\boldsymbol{X})[\xi]$ solution to a Sylvester equation

Outline

(1) Preliminaries: matrix function differentiation
(2) Riemannian geometry
(3) Riemannian optimization
(4) Numerical considerations
(5) Conclusion

Riemannian geometry - manifold

Manifold \mathcal{M}

space locally diffeomorphic to \mathbb{R}^{d}, with $\operatorname{dim}(\mathcal{M})=d$, i.e.

$$
\forall \theta \in \mathcal{M}, \exists \mathcal{U}_{\theta} \subset \mathcal{M} \text { and } \varphi_{\theta}: \mathcal{U}_{\theta} \rightarrow \mathbb{R}^{d}, \text { diffeomorphism }
$$

Riemannian geometry - manifold embedded in Euclidean space

manifold \mathcal{M} embedded in Euclidean space \mathcal{E}

\mathcal{M} defined through set of constraints in \mathcal{E}

$$
\begin{gathered}
\mathcal{M}=\left\{\theta \in \mathcal{E}: F(\theta)=0_{\hat{\mathcal{E}}}\right\} \\
F: \mathcal{E} \rightarrow \hat{\mathcal{E}} \text { submersion, } \hat{\mathcal{E}} \text { Euclidean space, } 0_{\hat{\mathcal{E}}} \text { zero element of } \hat{\mathcal{E}}
\end{gathered}
$$

Riemannian geometry - manifold

Examples

Manifold of symmetric positive definite matrices

$$
\mathcal{S}_{p}^{++}=\left\{\boldsymbol{\Sigma} \in \mathcal{S}_{p}: \forall \boldsymbol{x} \in \mathbb{R}^{p}, \boldsymbol{x}^{\top} \boldsymbol{\Sigma} \boldsymbol{x}>0\right\}
$$

Orthogonal group

$$
\mathcal{O}_{p}=\left\{\mathbf{O} \in \mathbb{R}^{p \times p}: \mathbf{O}^{T} \boldsymbol{O}=\boldsymbol{I}_{p}\right\}
$$

Riemannian geometry - tangent space

Curve $\gamma: \mathbb{R} \rightarrow \mathcal{M}, \quad \gamma(0)=\theta$, derivative: $\quad \dot{\gamma}(0)=\lim _{t \rightarrow 0} \frac{\gamma(t)-\gamma(0)}{t}$

Tangent space $T_{\theta} \mathcal{M}$

$$
T_{\theta} \mathcal{M}=\{\dot{\gamma}(0): \gamma: \mathbb{R} \rightarrow \mathcal{M}, \gamma(0)=\theta\}
$$

Riemannian geometry - manifold embedded in Euclidean space

Manifold \mathcal{M} embedded in Euclidean space \mathcal{E}

$$
\begin{aligned}
\mathcal{M}=\{\theta \in \mathcal{E}: & \left.F(\theta)=0_{\hat{\mathcal{E}}}\right\} \\
& F: \mathcal{E} \rightarrow \hat{\mathcal{E}}, \quad \hat{\mathcal{E}} \text { Euclidean space, } \quad 0_{\hat{\mathcal{E}}} \text { zero of } \hat{\mathcal{E}}
\end{aligned}
$$

Tangent space $T_{\theta} \mathcal{M}$ of embedded manifold

$$
T_{\theta} \mathcal{M}=\left\{\xi \in \mathcal{E}: \operatorname{DF}(\theta)[\xi]=0_{\hat{\mathcal{E}}}\right\}
$$

Riemannian geometry - tangent space

Examples

Manifold of symmetric positive definite matrices \mathcal{S}_{p}^{++}

$$
\mathcal{S}_{p}^{++} \text {open in } \mathcal{S}_{p} \Rightarrow \forall \boldsymbol{\Sigma} \in \mathcal{S}_{p}^{++}, \quad T_{\Sigma} \mathcal{S}_{p}^{++} \simeq \mathcal{S}_{p}
$$

Orthogonal group \mathcal{O}_{p}

$$
\begin{aligned}
& f(0)=\boldsymbol{0}^{T} \mathbf{O} \quad \mathrm{D} f(0)[\boldsymbol{\xi}]=\boldsymbol{0}^{T} \boldsymbol{\xi}+\boldsymbol{\xi}^{T} \boldsymbol{O} \\
& \mathbf{O}^{\top} \mathbf{O}=\boldsymbol{I}_{p} \quad \Rightarrow \quad \mathbf{O}^{\top} \boldsymbol{\xi}+\boldsymbol{\xi}^{\top} \mathbf{O}=\mathbf{0}_{p} \\
& T_{0} \mathcal{O}_{p}=\left\{\xi \in \mathbb{R}^{p \times p}: \mathbf{O}^{\top} \xi+\xi^{\top} \mathbf{O}=\mathbf{0}_{p}\right\} \\
& =\left\{\boldsymbol{\xi}=\boldsymbol{O} \boldsymbol{\Omega}: \boldsymbol{\Omega} \in \mathbb{R}^{p \times p}, \boldsymbol{\Omega}^{\top}=-\boldsymbol{\Omega}\right\}
\end{aligned}
$$

Riemannian geometry - Riemannian metric

Riemannian metric $\langle\cdot, \cdot\rangle$.

$\forall \theta \in \mathcal{M},\langle\cdot, \cdot\rangle_{\theta}: T_{\theta} \mathcal{M} \times T_{\theta} \mathcal{M} \rightarrow \mathbb{R}$ inner product on $T_{\theta} \mathcal{M}$
i.e., bilinear, symmetric, positive definite mapping
$\langle\cdot, \cdot\rangle_{\theta}$ varies smoothly in θ on \mathcal{M}

Riemannian metric defines length and relative positions of tangent vectors

$$
\|\xi\|_{\theta}^{2}=\langle\xi, \eta\rangle_{\theta} \quad \alpha(\xi, \eta)=\frac{\langle\xi, \xi\rangle_{\theta}}{\|\xi\|_{\theta}\|\eta\|_{\theta}}
$$

Riemannian geometry - Riemannian metric

Examples

Manifold of symmetric positive definite matrices \mathcal{S}_{p}^{++}

$$
\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle_{\boldsymbol{\Sigma}}=\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \boldsymbol{\xi} \boldsymbol{\Sigma}^{-1} \boldsymbol{\eta}\right)
$$

\mathcal{S}_{p}^{++}open in $\mathcal{S}_{p} \Rightarrow$ boundary at the infinite through metric

Orthogonal group \mathcal{O}_{p}

$$
\begin{aligned}
\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle_{\boldsymbol{O}}= & \operatorname{tr}\left(\boldsymbol{\xi}^{\top} \boldsymbol{\eta}\right) \\
& \text { restriction to } \mathcal{O}_{p} \text { of the Euclidean metric on } \mathbb{R}^{p \times p}
\end{aligned}
$$

Riemannian geometry - orthogonal projection

Manifold \mathcal{M} embedded in Euclidean space \mathcal{E}
Normal space:

$$
\left(T_{\theta} \mathcal{M}\right)^{\perp}=\left\{\nu \in \mathcal{E}:\langle\xi, \nu\rangle_{\theta}=0, \forall \xi \in T_{\theta} \mathcal{M}\right\}
$$

Orthogonal projection P

Every $\xi \in \mathcal{E}$ can be uniquely decomposed into

$$
\xi=P_{\theta}(\xi)+P_{\theta}^{\perp}(\xi)
$$

$P_{\theta}, P_{\theta}^{\perp}$ orthogonal projections onto $T_{\theta} \mathcal{M}$ and $\left(T_{\theta} \mathcal{M}\right)^{\perp}$

Riemannian geometry - orthogonal projection

Examples

Manifold of symmetric positive definite matrices \mathcal{S}_{p}^{++}

$$
\begin{aligned}
P_{\boldsymbol{\Sigma}}: \quad \mathbb{R}^{p \times p} & \rightarrow T_{\boldsymbol{\Sigma}} \mathcal{S}_{p}^{++} \simeq \mathcal{S}_{p} \\
\boldsymbol{\xi} & \mapsto \operatorname{sym}(\boldsymbol{\xi})
\end{aligned}
$$

Orthogonal group \mathcal{O}_{p}

$$
\begin{aligned}
P_{0}: \quad \mathbb{R}^{p \times p} & \rightarrow T_{0} \mathcal{O}_{p} \\
\boldsymbol{\xi} & \mapsto \boldsymbol{\xi}-\boldsymbol{O} \operatorname{sym}\left(\boldsymbol{O}^{\top} \boldsymbol{\xi}\right) \\
& \quad T_{0} \mathcal{O}_{p}=\left\{\boldsymbol{\xi}=\mathbf{O} \boldsymbol{\Omega}: \Omega \in \mathbb{R}^{p \times p}, \Omega^{\top}=-\Omega\right\}
\end{aligned}
$$

Riemannian geometry - Levi-Civita connection

Vector field: function $\xi: \theta \in \mathcal{M} \mapsto \xi_{\theta} \in T_{\theta} \mathcal{M} \quad \mathcal{X}(\mathcal{M})$: set of vector fields of \mathcal{M}

Levi-Civita connection: $\nabla: \mathcal{X}(\mathcal{M}) \times \mathcal{X}(\mathcal{M}) \rightarrow \mathcal{X}(\mathcal{M})$
generalizes notion of directional derivatives for vector fields

Riemannian geometry - Levi-Civita connection

Levi-Civita connection ∇

$\nabla: \mathcal{X}(\mathcal{M}) \times \mathcal{X}(\mathcal{M}) \rightarrow \mathcal{X}(\mathcal{M})$ such that

- $\nabla_{f(\theta) \xi_{\theta}+g(\theta) \nu_{\theta}} \eta_{\theta}=f(\theta) \nabla_{\xi_{\theta}} \eta_{\theta}+g(\theta) \nabla_{\nu_{\theta}} \eta_{\theta}$
- $\nabla_{\xi_{\theta}}\left(a \eta_{\theta}+b \nu_{\theta}\right)=a \nabla_{\xi_{\theta}} \eta_{\theta}+b \nabla_{\xi_{\theta}} \nu_{\theta}$
- $\nabla_{\xi_{\theta}}\left(f(\theta) \eta_{\theta}\right)=\mathrm{D} f(\theta)\left[\xi_{\theta}\right] \eta_{\theta}+f(\theta) \nabla_{\xi_{\theta}} \eta_{\theta}$
∇ associated to Riemannian metric $\langle\cdot, \cdot\rangle$., characterized by Koszul formula $\left\langle 2 \nabla_{\xi_{\theta}} \eta_{\theta}, \nu_{\theta}\right\rangle_{\theta}=\mathrm{D}\left\langle\xi_{\theta}, \nu_{\theta}\right\rangle_{\theta}\left[\eta_{\theta}\right]+\mathrm{D}\left\langle\eta_{\theta}, \nu_{\theta}\right\rangle_{\theta}\left[\xi_{\theta}\right]-\mathrm{D}\left\langle\xi_{\theta}, \eta_{\theta}\right\rangle_{\theta}\left[\nu_{\theta}\right]$

$$
-\left\langle\xi_{\theta},\left[\eta_{\theta}, \nu_{\theta}\right]\right\rangle_{\theta}+\left\langle\eta_{\theta},\left[\nu_{\theta}, \xi_{\theta}\right]\right\rangle_{\theta}+\left\langle\nu_{\theta},\left[\xi_{\theta}, \eta_{\theta}\right]\right\rangle_{\theta}
$$

Riemannian geometry - Levi-Civita connection

Examples

Manifold of symmetric positive definite matrices \mathcal{S}_{p}^{++}

$$
\nabla_{\xi_{\Sigma}} \eta_{\Sigma}=\mathrm{D} \eta_{\Sigma}\left[\xi_{\Sigma}\right]-\operatorname{sym}\left(\eta_{\Sigma} \Sigma^{-1} \xi_{\Sigma}\right)
$$

Orthogonal group \mathcal{O}_{p}

$$
\nabla_{\xi_{0}} \eta_{o}=P_{o}\left(\mathrm{D} \eta_{o}\left[\xi_{0}\right]\right)
$$

$$
P_{o}(\boldsymbol{\xi})=\boldsymbol{\xi}-\boldsymbol{O} \operatorname{sym}\left(\boldsymbol{O}^{\top} \boldsymbol{\xi}\right)
$$

Riemannian geometry - geodesics

Geodesics γ

$\gamma:[0,1] \rightarrow \mathcal{M}$ solution to initial value problem

$$
\nabla_{\dot{\gamma}(t)} \dot{\gamma}(t)=0_{\gamma(t)}
$$

given $(\gamma(0), \dot{\gamma}(0))$ or $(\gamma(0), \gamma(1))$
Geodesics generalize straight lines to manifolds: curves with no acceleration

Riemannian geometry - geodesics

Examples

Manifold of symmetric positive definite matrices \mathcal{S}_{p}^{++}

$$
\begin{array}{ccl}
\nabla_{\dot{\gamma}(t)} \dot{\gamma}(t)=0 \Rightarrow & \ddot{\gamma}(t)-\dot{\gamma}(t) \gamma(t)^{-1} \dot{\gamma}(t)=0 \\
\gamma(0)=\boldsymbol{\Sigma}, & \dot{\gamma}(0)=\boldsymbol{\xi}: & \gamma(t)=\boldsymbol{\Sigma} \exp \left(t \boldsymbol{\Sigma}^{-1} \boldsymbol{\xi}\right) \\
\gamma(0)=\boldsymbol{\Sigma}_{1}, & \gamma(1)=\boldsymbol{\Sigma}_{2}: & \gamma(t)=\boldsymbol{\Sigma}_{1}^{1 / 2}\left(\boldsymbol{\Sigma}_{1}^{-1 / 2} \boldsymbol{\Sigma}_{2} \boldsymbol{\Sigma}_{1}^{-1 / 2}\right)^{t} \boldsymbol{\Sigma}_{1}^{1 / 2}
\end{array}
$$

Orthogonal group \mathcal{O}_{p}

$$
\begin{array}{ll}
\nabla_{\dot{\gamma}(t)} \dot{\gamma}(t)=0 \Rightarrow \quad \ddot{\gamma}(t)-\gamma(t) \ddot{\gamma}(t)^{T} \gamma(t)=0 \\
\gamma(0)=\mathbf{0}, & \dot{\gamma}(0)=\boldsymbol{\xi}: \\
\gamma(0)=\mathbf{O}_{1}, & \gamma(1)=\mathbf{O}_{2}: \\
\gamma(t)=\mathbf{O}_{1}\left(\mathbf{O}_{1}^{T} \mathbf{O}_{2}\right)^{t}\left(\mathbf{O}^{\top} \boldsymbol{\xi}\right)
\end{array}
$$

Riemannian geometry - exponential and logarithm mappings

Riemannian exponential

$\forall \theta \in \mathcal{M}, \exp _{\theta}: T_{\theta} \mathcal{M} \rightarrow \mathcal{M}$ such that

$$
\exp _{\theta}(\xi)=\gamma(1)
$$

$\gamma:[0,1] \rightarrow \mathcal{M}$ geodesic with $\gamma(0)=\theta, \dot{\gamma}(0)=\xi$

Riemannian logarithm

$\forall \theta_{1} \in \mathcal{M}, \log _{\theta_{1}}: \mathcal{M} \rightarrow T_{\theta_{1}} \mathcal{M}$ such that

$$
\exp _{\theta_{1}}\left(\log _{\theta_{1}}\left(\theta_{2}\right)\right)=\theta_{2}
$$

Riemannian geometry - exponential and logarithm mappings

Examples

Manifold of symmetric positive definite matrices \mathcal{S}_{p}^{++}

$$
\begin{aligned}
& \exp _{\boldsymbol{\Sigma}}(\boldsymbol{\xi})=\boldsymbol{\Sigma} \exp \left(\boldsymbol{\Sigma}^{-1} \boldsymbol{\xi}\right) \\
& \log _{\boldsymbol{\Sigma}_{1}}\left(\boldsymbol{\Sigma}_{2}\right)=\boldsymbol{\Sigma}_{1} \log \left(\boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\Sigma}_{2}\right)
\end{aligned}
$$

Orthogonal group \mathcal{O}_{p}

$$
\begin{aligned}
& \exp _{\boldsymbol{o}}(\boldsymbol{\xi})=\boldsymbol{O} \exp \left(\boldsymbol{O}^{\top} \boldsymbol{\xi}\right) \\
& \log _{\boldsymbol{o}_{1}}\left(\boldsymbol{O}_{2}\right)=\boldsymbol{O}_{1} \log \left(\boldsymbol{O}_{1}^{\top} \boldsymbol{O}_{2}\right)
\end{aligned}
$$

Riemannian geometry - distance

Riemannian distance $d: \mathcal{M} \times \mathcal{M} \rightarrow \mathbb{R}^{+}$associated to $\langle\cdot, \cdot\rangle$.
$\theta_{1}, \theta_{2} \in \mathcal{M}, \boldsymbol{d}\left(\theta_{1}, \theta_{2}\right)$: length of the geodesic connecting θ_{1} and θ_{2}

$$
d\left(\theta_{1}, \theta_{2}\right)=\int_{0}^{1} \sqrt{\langle\dot{\gamma}(t), \dot{\gamma}(t)\rangle_{\gamma(t)}} d t
$$

Riemannian geometry - distance

Examples

Manifold of symmetric positive definite matrices \mathcal{S}_{p}^{++}

$$
d\left(\boldsymbol{\Sigma}_{1}, \boldsymbol{\Sigma}_{2}\right)=\left\|\log \left(\boldsymbol{\Sigma}_{1}^{-1 / 2} \boldsymbol{\Sigma}_{2} \boldsymbol{\Sigma}_{1}^{-1 / 2}\right)\right\|_{2}
$$

Orthogonal group \mathcal{O}_{p}

$$
d\left(\boldsymbol{O}_{1}, \boldsymbol{O}_{2}\right)=\left\|\log \left(\boldsymbol{O}_{1}^{\top} \boldsymbol{O}_{2}\right)\right\|_{2}
$$

Riemannian geometry - parallel transport

Parallel transport τ

$\tau:[0,1] \rightarrow T \mathcal{M}$, solution to

$$
\nabla_{\dot{\gamma}(t)} \tau(t)=0_{\gamma(t)},
$$

given curve $\gamma:[0,1] \rightarrow \mathcal{M}$ and $\tau(0)$

Riemannian geometry - parallel transport

Examples

Manifold of symmetric positive definite matrices \mathcal{S}_{p}^{++}

$$
\begin{gathered}
\quad \text { transport along geodesic } \gamma(t)=\boldsymbol{\Sigma} \exp \left(t \boldsymbol{\Sigma}^{-1} \boldsymbol{\xi}\right), \quad \tau(0)=\boldsymbol{\eta} \\
\nabla_{\dot{\gamma}(t)} \tau(t)=0 \Rightarrow \quad \dot{\tau}(t)-\operatorname{sym}\left(\dot{\gamma}(t) \gamma(t)^{-1} \tau(t)\right)=0 \\
\tau(t)=\exp \left(t \boldsymbol{\xi} \boldsymbol{\Sigma}^{-1} / 2\right) \boldsymbol{\eta} \exp \left(t \boldsymbol{\Sigma}^{-1} \boldsymbol{\xi} / 2\right)
\end{gathered}
$$

Orthogonal group \mathcal{O}_{p} transport along geodesic $\gamma(t)=\mathbf{O} \exp \left(t \mathbf{O}^{\top} \boldsymbol{\xi}\right), \quad \tau(0)=\eta$

$$
\begin{aligned}
\nabla_{\dot{\gamma}(t)} \tau(t) & =0 \Rightarrow \quad \dot{\tau}(t)-\gamma(t) \dot{\tau}(t)^{T} \gamma(t)=\mathbf{0} \\
\tau(t) & =\exp \left(t \xi \boldsymbol{0}^{\top} / 2\right) \boldsymbol{\eta} \exp \left(t \mathbf{0}^{\top} \boldsymbol{\xi} / 2\right)
\end{aligned}
$$

Outline

(1) Preliminaries: matrix function differentiation
(2) Riemannian geometry
(3) Riemannian optimization
(4) Numerical considerations
(5) Conclusion

Riemannian optimization

$$
\theta^{*}=\underset{\theta \in \mathcal{M}}{\operatorname{argmin}} f(\theta)
$$

from $\theta^{(0)}$, sequence of iterates $\left\{\theta^{(k)}\right\}$ converging to θ^{*}

Riemannian optimization

Examples

Fréchet mean of $\left\{\theta_{i}\right\}$ on \mathcal{M}

$$
\begin{aligned}
f(\theta)=\frac{1}{2 n} & \sum_{i=1}^{n} d^{2}\left(\theta, \theta_{i}\right) \\
& d(\cdot, \cdot) \text { Riemannian distance on } \mathcal{M} \text { associated to }\langle\cdot, \cdot\rangle .
\end{aligned}
$$

Tyler estimator for samples $\left\{\boldsymbol{x}_{i}\right\}$ on \mathcal{S}_{p}^{++}

$$
f(\boldsymbol{\Sigma})=p \sum_{i=1}^{n} \log \left(\boldsymbol{x}_{i}^{\boldsymbol{\top}} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}\right)+n \log \operatorname{det}(\boldsymbol{\Sigma})
$$

Riemannian optimization - descent direction

Descent direction

$\theta \in \mathcal{M}$, descent direction $\xi \in T_{\theta} \mathcal{M}$ of f such that
$\mathrm{D} f(\theta)[\xi]<0$

Riemannian optimization - gradient

Riemannian gradient grad f
$\theta \in \mathcal{M}, \operatorname{grad} f(\theta) \in T_{\theta} \mathcal{M}$, unique tangent vector such that $\forall \xi \in T_{\theta} \mathcal{M}$

$$
\langle\operatorname{grad} f(\theta), \xi\rangle_{\theta}=\mathrm{D} f(\theta)[\xi]
$$

Riemannian optimization - gradient

Riemannian gradient in \mathcal{M} can usually be obtained from Euclidean gradient in \mathcal{E}

Examples

Manifold of symmetric positive definite matrices \mathcal{S}_{p}^{++}

$$
\operatorname{grad} f(\boldsymbol{\Sigma})=\boldsymbol{\Sigma} \operatorname{sym}\left(\operatorname{grad}_{\mathcal{E}} f(\boldsymbol{\Sigma})\right) \boldsymbol{\Sigma}
$$

Orthogonal group \mathcal{O}_{p}

$$
\operatorname{grad} f(\mathbf{O})=P_{0}\left(\operatorname{grad}_{\mathcal{E}} f(\mathbf{O})\right)
$$

Riemannian optimization - gradient

Examples

Fréchet mean of $\left\{\theta_{i}\right\}$ on \mathcal{M}

$$
\operatorname{grad} f(\theta)=-\frac{1}{n} \sum_{i=1}^{n} \log _{\theta}\left(\theta_{i}\right)
$$

Tyler estimator for samples $\left\{\boldsymbol{x}_{i}\right\}$ on \mathcal{S}_{p}^{++}

$$
\operatorname{grad} f(\boldsymbol{\Sigma})=n \boldsymbol{\Sigma}-p \psi(\boldsymbol{\Sigma}) \quad \psi(\boldsymbol{\Sigma})=\sum_{i=1}^{n} \frac{\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top}}{\boldsymbol{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}}
$$

Riemannian optimization - retraction

retraction R

$\theta \in \mathcal{M}, R_{\theta}: T_{\theta} \mathcal{M} \rightarrow \mathcal{M}$ such that

$$
R_{\theta}\left(\mathrm{O}_{\theta}\right)=\theta \quad \mathrm{D} R_{\theta}\left(\mathrm{O}_{\theta}\right)[\xi]=\xi, \forall \xi \in T_{\theta} \mathcal{M}
$$

Most natural retraction: Riemannian exponential mapping
But: might be complicated, numerically expensive or unstable \Rightarrow Other retractions might be advantageous

Riemannian optimization - retraction

Examples

Manifold of symmetric positive definite matrices \mathcal{S}_{p}^{++}

$$
R_{\Sigma}(\xi)=\Sigma+\xi+\frac{1}{2} \xi \Sigma^{-1} \xi
$$

Orthogonal group \mathcal{O}_{p}

$$
\begin{aligned}
& R_{0}(\boldsymbol{\xi})=\operatorname{uf}(\boldsymbol{O}+\boldsymbol{\xi}) \\
& \quad \operatorname{uf}(\boldsymbol{M})=\boldsymbol{U} \boldsymbol{V}^{\top} \text { from } \operatorname{svd} \boldsymbol{M}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{V}^{\top}
\end{aligned}
$$

Riemannian optimization - optimization scheme

Minimize f on \mathcal{M} from θ :

- descent direction $\xi \in T_{\theta} \mathcal{M}$

$$
\langle\operatorname{grad} f(\theta), \xi\rangle_{\theta}<0
$$

- retraction of ξ on \mathcal{M}

- reiterate until critical point

$$
\operatorname{grad} f(\theta)=0_{\theta}
$$

Riemannian optimization - gradient descent

descent direction

$$
\xi^{(k)}=-\operatorname{grad} f\left(\theta^{(k)}\right)
$$

update

$$
\begin{aligned}
\theta^{(k+1)}=R_{\theta^{(k)}} & \left(-t_{k} \operatorname{grad} f\left(\theta^{(k)}\right)\right) \\
& t_{k}: \text { stepsize, can be computed with linesearch }
\end{aligned}
$$

Riemannian optimization - vector transport

Vector transport \mathcal{T}

$\theta_{1}, \theta_{2} \in \mathcal{M}, \mathcal{T}_{\theta_{1} \rightarrow \theta_{2}}: T_{\theta_{1}} \mathcal{M} \rightarrow T_{\theta_{2}} \mathcal{M}$ such that

$$
\begin{aligned}
& \mathcal{T}_{\theta_{1} \rightarrow \theta_{1}}\left(\xi_{\theta_{1}}\right)=\xi_{\theta_{1}} \\
& \mathcal{T}_{\theta_{1} \rightarrow \theta_{2}}\left(a \xi_{\theta_{1}}+b \nu_{\theta_{1}}\right)=a \mathcal{T}_{\theta_{1} \rightarrow \theta_{2}}\left(\xi_{\theta_{1}}\right)+b \mathcal{T}_{\theta_{1} \rightarrow \theta_{2}}\left(\nu_{\theta_{1}}\right)
\end{aligned}
$$

Most natural vector transport: from parallel transport on \mathcal{M}
But: might be complicated, numerically expensive or unstable \Rightarrow Other vector transports might be advantageous

Riemannian optimization - vector transport

Examples

Manifold of symmetric positive definite matrices \mathcal{S}_{p}^{++}
from parallel transport:
$\mathcal{T}_{\boldsymbol{\Sigma}_{1} \rightarrow \boldsymbol{\Sigma}_{2}}\left(\boldsymbol{\xi}_{1}\right)=\left(\boldsymbol{\Sigma}_{2} \boldsymbol{\Sigma}_{1}^{-1}\right)^{1 / 2} \boldsymbol{\xi}_{1}\left(\boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\Sigma}_{2}\right)^{1 / 2}$
alternative ones:
$\mathcal{T}_{\boldsymbol{\Sigma}_{1} \rightarrow \boldsymbol{\Sigma}_{2}}\left(\xi_{1}\right)=\boldsymbol{\xi}_{1} \quad \mathcal{T}_{\boldsymbol{\Sigma}_{1} \rightarrow \boldsymbol{\Sigma}_{2}}\left(\xi_{1}\right)=\boldsymbol{\Sigma}_{2}^{1 / 2} \boldsymbol{\Sigma}_{1}^{-1 / 2} \boldsymbol{\xi}_{1} \boldsymbol{\Sigma}_{1}^{-1 / 2} \boldsymbol{\Sigma}_{2}^{1 / 2}$

Orthogonal group \mathcal{O}_{p}
from parallel transport:
$\mathcal{T}_{\mathbf{O}_{1} \rightarrow \mathbf{O}_{2}}\left(\boldsymbol{\xi}_{1}\right)=\left(\mathbf{O}_{2} \mathbf{O}_{1}^{T}\right)^{1 / 2} \boldsymbol{\xi}_{1}\left(\mathbf{O}_{1}^{T} \mathbf{O}_{2}\right)^{1 / 2}$
alternative one:
$\mathcal{T}_{\mathbf{o}_{1} \rightarrow \mathbf{O}_{2}}\left(\xi_{1}\right)=P_{\mathbf{O}_{2}}\left(\xi_{1}\right)$

Riemannian optimization - conjugate gradient

descent direction

$$
\xi^{(k)}=-\operatorname{grad} f\left(\theta^{(k)}\right)+\beta_{k} \mathcal{T}_{\theta^{(k-1)} \rightarrow \theta^{(k)}}\left(\xi^{(k-1)}\right)
$$

β_{k} : several rules - Fletcher-Reeves, Polak-Ribière,...
update

$$
\theta^{(k+1)}=R_{\theta^{(k)}}\left(t_{k} \xi^{(k)}\right)
$$

t_{k} : stepsize, can be computed with linesearch

Riemannian optimization - Hessian

Riemannian Hessian Hess f
$\theta \in \mathcal{M}, \operatorname{Hess} f(\theta): T_{\theta} \mathcal{M} \rightarrow T_{\theta} \mathcal{M}$ such that $\forall \xi \in T_{\theta} \mathcal{M}$

$$
\text { Hess } f(\theta)[\xi]=\nabla_{\xi} \operatorname{grad} f(\theta)
$$

Riemannian optimization - Hessian

Riemannian Hessian in \mathcal{M} can be obtained from Euclidean Hessian and gradient in \mathcal{E}

Examples

Manifold of symmetric positive definite matrices \mathcal{S}_{p}^{++}

$$
\operatorname{Hess} f(\boldsymbol{\Sigma})[\xi]=\boldsymbol{\Sigma} \operatorname{sym}\left(\operatorname{Hess}_{\mathcal{E}} f(\boldsymbol{\Sigma})[\xi]\right) \boldsymbol{\Sigma}+\operatorname{sym}\left(\xi \operatorname{sym}\left(\operatorname{grad}_{\mathcal{E}} f(\boldsymbol{\Sigma})\right) \boldsymbol{\Sigma}\right)
$$

Orthogonal group \mathcal{O}_{p}

$$
\operatorname{Hess} f(\boldsymbol{O})[\boldsymbol{\xi}]=P_{\boldsymbol{O}}\left(\operatorname{Hess}_{\mathcal{E}} f(\boldsymbol{O})[\boldsymbol{\xi}]-\boldsymbol{\xi} \operatorname{sym}\left(\boldsymbol{O}^{\top} \operatorname{grad}_{\mathcal{E}} f(\boldsymbol{O})\right)\right)
$$

Riemannian optimization - Hessian

Examples

Fréchet mean of $\left\{\theta_{i}\right\}$ on \mathcal{M}

$$
\text { Hess } f(\theta)[\xi]=-\frac{1}{n} \sum_{i=1}^{n} \nabla_{\xi} \log _{\theta}\left(\theta_{i}\right)
$$

Tyler estimator for samples $\left\{\boldsymbol{x}_{i}\right\}$ on \mathcal{S}_{p}^{++}

$$
\begin{gathered}
\text { Hess } f(\boldsymbol{\Sigma})[\boldsymbol{\xi}]=p \mathrm{D} \Psi(\boldsymbol{\Sigma})[\boldsymbol{\xi}]+p \operatorname{sym}\left(\boldsymbol{\xi} \boldsymbol{\Sigma}^{-1} \Psi(\boldsymbol{\Sigma})\right) \\
\Psi(\boldsymbol{\Sigma})=\sum_{i=1}^{n} \frac{\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{x}_{i}^{\top}}{\boldsymbol{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}_{i}} \quad \mathrm{D} \Psi(\boldsymbol{\Sigma})[\boldsymbol{\xi}]=\sum_{i=1}^{n} \frac{\boldsymbol{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\xi} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}_{i}}{\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}_{i}\right)^{2}} \boldsymbol{x}_{i} \boldsymbol{x}_{i}
\end{gathered}
$$

Riemannian optimization - Newton method

descent direction
$\xi^{(k)}$ solution to

$$
\text { Hess } f\left(\theta^{(k)}\right)\left[\xi^{(k)}\right]=-\operatorname{grad} f\left(\theta^{(k)}\right)
$$

update

$$
\theta^{(k+1)}=R_{\theta^{(k)}}\left(\xi^{(k)}\right)
$$

Outline

(1) Preliminaries: matrix function differentiation
(2) Riemannian geometry
(3) Riemannian optimization
(4) Numerical considerations

5 Conclusion

Numerical ressources

- Matlab: https://www.manopt.org
- Python:

Riemannian geometry: https://geomstats.github.io/ Optimization:https://pymanopt.org https://geoopt.readthedocs.io/en/latest/ https://github.com/mctorch/mctorch
Autodifferentiation:
pytorch, tensorflow
https://github.com/HIPS/autograd
A https://jax.readthedocs.io/en/latest/
Julia:
https://manoptjl.org/

Example with pymanopt

Task
Optimizing the negative log-likelihood of a Gaussian distribution over the manifold $\mathcal{M}=\mathbb{R}^{d} \times \mathcal{S}_{d}^{+}$.

Code: https://replit.com/Dfallingtree/
Riemannian-Optimization-Gaussian-Likelihood?v=1

Outline

(1) Preliminaries: matrix function differentiation
(2) Riemannian geometry
(3) Riemannian optimization
(4) Numerical considerations

(5) Conclusion

Conclusion

