Information geometry in elliptical distributions

Part II of "Riemannian and information geometry in signal processing and machine learning," EUSIPCO 2022

Florent Bouchard, Arnaud Breloy and Ammar Mian

Statistics in signal processing and machine learning

Statistical point of view is ubiquitous:

- Data appears as the result of a random processes (uncertainties)
- Cast statistical models that reasonably fit empirical histograms
- Derive processes that achieve certain average performance for a task

(fitting, estimation, detection, classification, prediction)

L. L. Scharf, C. Demeure, "Statistical signal processing: detection, estimation, and time series analysis," Prentice Hall, 1991

T. Hastie, R. Tibshirani, J. Friedman, "The Elements of Statistical Learning," Springer-Verlag, 2009

	00000	00000	 00000	000000000	

Parametric approach

Represent or analyze the data ${f x}$ through some statistical parameter ${m heta}$

Example with $p \simeq 7k$ genes of n = 63 patients with k = 4 classes [Khan2001] represented by

"Assume $\mathbf{x} \sim f(\mathbf{x}, \boldsymbol{\theta})$, then do stuff"

- **Design** a meaningful pdf f and parameter $\boldsymbol{\theta}$
- Analyze model properties, performance bounds...
- Solve related optimization problems (MLEs, barycenters...)
- Apply the results to a task

Today's talk: What can Riemannian geometry bring to these steps?

• Design

- Examples of f and $\boldsymbol{\theta}$ from elliptical distributions
- \cdot Remark that $heta \in \mathcal{M} \Longrightarrow$ pretext to re-define Riemannian tools

• Analyze

- Information geometry
- Intrinsic Cramér-Rao bounds

• Solve

- Riemannian optimization and geodesic convexity
- Examples where numerical stability is improved

• Apply

• Change detection in satellite image time series

Riem. Opt.

stim. CES 1000000000 CD SITS

Motivation for elliptical distributions

Objective: find a model $f(\mathbf{x}, \theta)$

- \mathbf{x} is a sample in \mathbb{R}^p or \mathbb{C}^p (unstructured)
- *f* is a **pdf**
- θ parameterizes the pdf

Challenges from real data:

- Non-Gaussian, heavy-tailed distributions
- Outliers

Elliptical models good entry point for this tutorial =)

- Large family that that generalizes the multivariate Gaussian distribution
- Still parameterized through 1st and 2nd order moments (mean, covariance)
- Better fit to empirical histograms \rightarrow better results

	Design f						
000		00000	000000	000000000000	00000	000000000	

Motivating real-data examples (1/2)

Bark.0000 and Leaves.0008 from VisTex and marginal distributions of wavelet coefficients from RGB channels.

F. Pascal, L. Bombrun, J-Y. Tourneret, Y. Berthoumieu, "Parameter estimation for multivariate generalized Gaussian distributions," IEEE TSP, 2013

	Design f			
000		00000	00000	00000

Estim. CES

CD SITS

Motivating real-data examples (2/2)

Modulus of HH and VV band of Shore of Lake Ontario sensed by McMaster IPIX radar

E. Ollila, D. E. Tyler, V. Koivunen, H. V. Poor, "Complex elliptically symmetric distributions: Survey, new results and applications," IEEE TSP, 2012

	Design f						
000		00000	00000	000000000000000000000000000000000000000	00000	aaaaaaaaa	

Elliptical models

Complex elliptically symmetric distributions (CES)

 $\mathbf{x} \sim \mathcal{CES}(oldsymbol{\mu}, oldsymbol{\Sigma}, g)$ if its pdf can be written

$$f(\mathbf{x}) \propto |\mathbf{\Sigma}|^{-1} g((\mathbf{x} - \boldsymbol{\mu})^H \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})),$$

where $g:[0,\infty) \to [0,\infty)$ is the **density generator** and

- $\boldsymbol{\mu} \in \mathbb{C}^p$ is the symmetry **center**
- $\Sigma \in \mathcal{H}_p^{++}$ is the scatter matrix

If **x** has finite 2^{nd} -order moment, the **covariance matrix** is $\mathbb{E}\left[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^H\right] = \alpha \Sigma$

•
$$\alpha = -2\varphi'(0)$$
,

• φ is defined by the characteristic function $c_{\mathbf{x}}(\mathbf{t}) = \exp(i\mathbf{t}^H \boldsymbol{\mu}) \varphi(\mathbf{t}^H \boldsymbol{\Sigma} \mathbf{t})$

Practical CES representation

Stochastic representation theorem

 $\mathbf{x} \sim \mathcal{CES}(\boldsymbol{\mu}, \boldsymbol{\Sigma}, g)$ iif it admits the stochastic representation

$$\mathbf{x} \stackrel{d}{=} \boldsymbol{\mu} + \sqrt{\mathcal{Q}} \mathbf{\Sigma}^{1/2} \mathbf{u}$$

where

- $\mathbf{u} \sim \mathcal{U}\left(\mathbb{C}S^p\right)$ follow an uniform distribution on unit complex *p*-sphere
- \mathcal{Q} is the 2nd-order modular variate, independent of \mathbf{u} , with pdf

$$p(\mathcal{Q}) = \delta_{p,g}^{-1} \mathcal{Q}^{p-1} g(\mathcal{Q})$$

Interpretation:

- Σ pilots the shape of the ellipsoid (privileged direction)
- Q (equivalently g) models amplitude fluctuations (possibly heavy tails)

Some remarks on CES properties

Design f

- 1. **One-to-one relation** between pdf of \mathcal{Q} and g
- 2. Ambiguity: (Q, Σ) and $(c^{-1}Q, c\Sigma)$, c > 0 are valid stochastic representations of **x** \Rightarrow requires normalization constraint
- 3. Covariance matrix: $\mathbb{E}\left[(\mathbf{x} \boldsymbol{\mu})(\mathbf{x} \boldsymbol{\mu})^H\right] = \mathbb{E}[\mathcal{Q}]\boldsymbol{\Sigma}/p$, if $\mathbb{E}[\mathcal{Q}]$ exists
- 4. Random number generation:
 - Draw a 2^{nd} -order modular variate \mathcal{Q} from its pdf p()
 - + Draw $\mathbf{n} \sim \mathcal{CN}(\mathbf{0},\mathbf{I}_p)$, then $\mathbf{u} \stackrel{d}{=} \mathbf{n}/|\mathbf{n}| \; \mathcal{U} \sim (\mathbb{C}S^p)$
 - \cdot Set $\mathbf{x} \stackrel{d}{=} \boldsymbol{\mu} + \sqrt{\mathcal{Q}} \boldsymbol{\Sigma}^{1/2} \mathbf{u}$

Important related distribution families

Compound Gaussian (CG) aka spherically invariant random vectors (SIRV)

 $\mathbf{x}\sim\mathcal{CG}(oldsymbol{\mu},oldsymbol{\Sigma},\mathit{f_{ au}})$ iif it admits the stochastic CG-representation

$$\mathbf{x} \stackrel{d}{=} \boldsymbol{\mu} + \sqrt{ au} \mathbf{n}$$

where

- $\tau \geq 0$ is called the **texture**, with pdf f_{τ} that is independent of ${f n}$
- $\mathbf{n} \sim \mathbb{C}\mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$ is called the **speckle**.

Note: subclass of CES because if $\mathbf{n}_0 \sim \mathbb{CN}(\mathbf{0}, \mathbf{I})$, then $\mathbf{n}_0 \stackrel{d}{=} \sqrt{s}\mathbf{u}$ with $s \sim \Gamma(1, p)$

Mixture of scaled Gaussian distributions (MSG) $\mathbf{x}_i \sim \mathbb{CN}(\mathbf{0}, \tau_i \boldsymbol{\Sigma})$, where τ_i is unknown deterministic

Main examples (1/2)

Multivariate Gaussian distribution

 $\mathsf{CG:} \ f_{\tau} = \delta_1 \ \ (ext{or CES with } \mathcal{Q} \sim \Gamma(1, p))$

Multivariate $\mathit{t}\text{-distribution}$ with degree of freedom ν

CG: $\tau^{-1} \sim \Gamma(\nu/2, 2/\nu)$, where $\nu > 0$

- Encompasses Complex Cauchy dist. (
 u = 1) and CN dist. $(
 u
 ightarrow \infty)$
- + Finite 2nd-order moment for $\nu>2$

K-distribution with shape parameter ν

CG: $\tau \sim \Gamma(\nu, 1/\nu)$, where $\nu > 0$

- Encompasses heavy-tailed dist. ($u \downarrow$) and CN dist. ($u \to \infty$)

·
$$\mathbb{E}[\tau] = 1 \Longrightarrow \Sigma = \mathbb{E}\left[\mathbf{x}\mathbf{x}^H\right]$$

	Design f					
000		00000	00000	 00000	0000000000	

Main examples (2/2)

GG distribution with parameters s and η

- + CES: $\mathcal{Q} =_d G^{1/s}$ where $G \sim \Gamma(m/s,\eta), s, \eta > 0$
- PDF: $f_{\mathbf{x}}(\mathbf{x}) = cte |\mathbf{\Sigma}|^{-1} \exp \left(-(\eta \, \mathbf{x}^H \mathbf{\Sigma}^{-1} \mathbf{x})^s\right)$
- $\cdot\,$ Complex analog of the exponential power family, also called Box-Tiao distributions
- Subclass of multivariate symmetric Kotz-type distributions
- Case $s = 1 \Longrightarrow CN$ dist.
- Heavier tailed than normal for s<1 and lighter tailed for s>1
- $s = 1/2 \Longrightarrow$ generalization of Laplace dist.

	Design f				
000		00000	 	00000	

Wrapping-up

Complex elliptically symmetric distributions (CES)

 $\mathbf{x} \sim \mathcal{CES}(oldsymbol{\mu}, oldsymbol{\Sigma}, g)$ if it has for pdf

$$f(\mathbf{x}) \propto |\mathbf{\Sigma}|^{-1} g\left((\mathbf{x} - \boldsymbol{\mu})^H \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})
ight)$$

	Design f						
000		00000	00000	000000000000	00000	aaaaaaaaa	

Pointers and keywords

On CES

K. T. Fang, Y. T. Zhang, "Generalized Multivariate Analysis," Springer Verlag, 1990

E. Ollila, D. Tyler, V. Koivunen, H. Poor, "Complex elliptically symmetric distributions: survey, new results and applications," IEEE Transactions Signal Processing, 60(11):5597-5625, 2012

On non-circularity

P. J. Schreier, L. L. Scharf, "Statistical signal processing of complex-valued data: the theory of improper and noncircular signals," Cambridge university press, 2010

H. Abeida, J-P. Delmas "Slepian–Bangs formula and Cramér–Rao bound for circular and non-circular complex elliptical symmetric distributions," IEEE Signal Processing Letters, 26(10), 1561-1565, 2019

Distributions on manifolds

K. V. Mardia, P. E. Jupp, "Directional statistics," New York: Wiley, 2000

X. Pennec, "Probabilities and statistics on Riemannian manifolds: Basic tools for geometric measurements," NSIP (Vol. 3, pp. 194-198), 1999

S. Said, L. Bombrun, Y. Berthoumieu, J. H. Manton, "Riemannian Gaussian distributions on the space of symmetric positive definite matrices," IEEE Transactions on Information Theory, 63(4), 2153-2170, 2017

• Design

- Examples of f and $\boldsymbol{\theta}$ from elliptical distributions
- \cdot Remark that $heta \in \mathcal{M} \Longrightarrow$ pretext to re-define Riemannian tools

• Analyze

- Information geometry
- Intrinsic Cramér-Rao bounds

• Solve

- Riemannian optimization and geodesic convexity
- Examples where numerical stability is improved

• Apply

• Change detection in satellite image time series

Structured parameter space as a manifold

Generally, the distribution parameter space, e.g.

- · Covariance matrices: $\mathbf{\Sigma} \in \mathcal{H}_p^{++}$
- Product spaces: $\{\{\tau_i\}_{i=1}^n, \ \mu, \ \Sigma\} \in (\mathbb{R}^+)^n \times \mathbb{C}^p \times \mathcal{H}_p^{++}$

turn out to be a **manifold** \mathcal{M} (locally diffeomorphic to \mathbb{R}^d , with dim $(\mathcal{M}) = d$) $\forall \theta \in \mathcal{M}, \exists \mathcal{U}_{\theta} \subset \mathcal{M} \text{ and } \varphi_{\theta} : \mathcal{U}_{\theta} \to \mathbb{R}^d$, diffeomorphism

		Manifolds					
000	00000000000		00000	000000000000	00000	aaaaaaaaa	

Riemannian manifolds (1/2)

Tangent space $T_{\theta}\mathcal{M}$ at point θ

- · Curve $\gamma:\mathbb{R}
 ightarrow\mathcal{M}$, $\gamma(0)= heta$
- Derivative: $\dot{\gamma}(0) = \lim_{t \to 0} \frac{\gamma(t) \gamma(0)}{t}$

Equip $T_{\theta}\mathcal{M}$ with a **Riemannian metric** $\langle \cdot, \cdot \rangle_{\theta}$ yields a **Riemannian manifold**

 $\cdot \langle \cdot, \cdot \rangle_{\theta} : (T_{\theta}\mathcal{M} \times T_{\theta}\mathcal{M}) \to \mathbb{R}$ inner product on $T_{\theta}\mathcal{M}$

(bilinear, symmetric, positive definite)

 $\cdot\,$ defines length and relative positions of tangent vectors

$$\|\xi\|_{\theta}^{2} = \langle \xi, \xi \rangle_{\theta} \qquad \qquad \alpha(\xi, \eta) = \frac{\langle \xi, \eta \rangle_{\theta}}{\|\xi\|_{\theta} \|\eta\|_{\theta}}$$

The Riemannian metric $\langle \cdot, \cdot \rangle_{\theta}$ induces **<u>a</u> geometry** for \mathcal{M}

Geodesics $\gamma : [0,1] \to \mathcal{M}$

 \cdot generalizes straight lines on ${\cal M}$

Manifolds

• curves on \mathcal{M} with zero acceleration: $\frac{D^2\gamma}{dt^2}=0$

defined by $(\gamma(0),\dot{\gamma}(0))$ or $(\gamma(0),\gamma(1))$

operator $\frac{D^2}{dt^2}$ depends on \mathcal{M} and $\langle \cdot, \cdot \rangle$.

Riemannian distance dist
$$(\theta, \hat{\theta}) = \int_0^1 \|\dot{\gamma}(t)\|_{\gamma(t)} dt$$

distance = length of γ connecting θ and $\hat{\theta}$

Riem. Opt.

Estim. CES DODODODODO CD SITS

Which metric/geometry to chose?

The Fisher information metric looks like an ideal driven by the model

Still, we can chose alternate metrics suited to some needs

- Availability (closed-form) of theoretical objects
- Interesting **invariance** properties
- Practical results of the chosen task

Metric	Geodesics	Distance	Retraction	Completeness	Invariance 1	Invariance 2	Perf.
(a)	×	×	✓	 ✓ 	×	✓	82%
(b)	1	×	1	 Image: A second s	1	×	86%
(c)	1	1	1	×	×	1	79%

Outline

• Design

- Examples of f and $\boldsymbol{\theta}$ from elliptical distributions
- \cdot Remark that $heta \in \mathcal{M} \Longrightarrow$ pretext to re-define Riemannian tools

• Analyze

- Information geometry
- Intrinsic Cramér-Rao bounds

• Solve

- Riemannian optimization and geodesic convexity
- Examples where numerical stability is improved

• Apply

• Change detection in satellite image time series

Intro DDD	Design <i>f</i> 000000000000000	Manifolds	Info. Geom.	iCRLB 00000000000	Riem. Opt.	Estim. CES 000000000	CD SITS

Fisher information metric

Sample set $\{\mathbf{x}_k\}$, iid according to the distribution $f(\mathbf{x}; \theta)$, with $\theta \in \mathcal{M}$ (smooth manifold)

Score vector $s_{\theta}({\mathbf{x}_i}) = \nabla_{\theta} \ln f({\mathbf{x}_i}; \theta)$

The Fisher information metric $\langle \cdot, \cdot \rangle_{\theta}^{\text{FIM}}$ is the covariance matrix of the score vector

In practice

$$\langle \xi, \xi \rangle_{\theta}^{\text{FIM}} = -\mathbb{E} \left[\left. \left. \frac{\mathrm{d}^2}{\mathrm{d}t^2} \ln f(\{\mathbf{x}_k\}; \theta + t\xi) \right|_{t=0} \right. \right]$$

and polarization formula $\langle \xi_i, \xi_j \rangle_{\theta}^{\text{FIM}} = \frac{1}{4} (\langle \xi_i + \xi_j, \xi_i + \xi_j \rangle_{\theta}^{\text{FIM}} - \langle \xi_i - \xi_j, \xi_i - \xi_j \rangle_{\theta}^{\text{FIM}})$

Intro	Design <i>f</i> 000000000000	Manifolds	Info. Geom.	iCRLB	Riem. Opt.	Estim. CES 000000000	CD SITS DDDDDDDDDDDDDDDD

Fisher-Rao geometry

The FIM $\langle \cdot, \cdot \rangle_{\theta}^{\text{FIM}}$ defines a **Riemannian metric** on $T_{\theta}\mathcal{M}$

 $\mathcal M$ equipped with $\langle\cdot,\cdot\rangle_{\theta}^{\rm FIM}$ is called a Fisher-Rao manifold

- a geometry for ${\cal M}$ (Levi-Civita connexion, geodesics, distances, ...)
- an implicit a geometry for a family of statistical models

 $\operatorname{dist}_{\operatorname{Rao}}^2(f(\cdot,\theta_1),f(\cdot,\theta_2)) = \operatorname{dist}_{\operatorname{FIM}}^2(\theta_1,\theta_2)$

with many possible applications!

More generally, **information geometry** studies Riemannian manifolds whose points correspond to probability distributions

кіет. Орт. ПППППП stim. CES 1000000000 CD SITS

Information geometry is a broad field

Fisher-Rao: FIM paired with its Levi-Civita connection

Chentsov: \mathcal{M} equipped with more general connections

Amari: α -geometry (dual affine connections coupled to the FIM)

Other generalizations

- non parametric, semi-parametric, ...
- · Interactions between information geometry and optimal transport

(links between Wasserstein distances and divergences, geometry induced by Wasserstein metric, ...)

Many results such as **generalized divergences** and tools for **Riemannian optimization**

F. Nielsen, "The many faces of information geometry," Not. Am. Math., 2022

Example: Fisher-Rao distance between multivariate Gaussian distributions

Assume $\mathbf{x} \sim \mathbb{C}\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$, then

 $f(\mathbf{x}, \mathbf{\Sigma}) \propto |\mathbf{\Sigma}|^{-1} \exp\left(\mathbf{x}^H \mathbf{\Sigma}^{-1} \mathbf{x}\right)$

Taylor expansions of $\ln f$, expectation, polarization, yields

 $\langle \xi_i, \xi_j \rangle_{\Sigma}^{\text{FIM}} = \text{Tr} \left\{ \Sigma^{-1} \xi_i \Sigma^{-1} \xi_j \right\}$

Conclusion the FIM for centered Gaussian models is the affine invariant metric !

The Fisher-Rao distance between two centered $\mathbb{C}\mathcal{N}$ is then

$$\operatorname{dist}^2_{\mathbb{C}\mathcal{N}}(\boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_2) = ||\log \boldsymbol{\Sigma}_1^{-1/2} \boldsymbol{\Sigma}_2 \boldsymbol{\Sigma}_1^{-1/2}||_F^2$$

used, e.g., to compare/classify population sets \rightarrow Part III

Bridges between statistics and the Riemannian geometry of $\mathcal{H}_p^{++}!$ metric \leftrightarrow model on x

ntro DDD	Design <i>f</i> 000000000000	Manifolds	Info. Geom.	iCRLB DDDDDDDDDDDD	Riem. Opt.	Estim. CES 000000000	CD SITS DDDDDDDDDDDDDDD

Some pointers

Univariate Gaussian models

S. I Costa, S. A. Santos, J. E. Strapasson, "Fisher information distance: A geometrical reading," Discrete Applied Mathematics, 197, 59-69, 2015

Centered elliptical models

C. A. Micchelli, L. Noakes, "Rao distances," Journal of multivariate analysis, 92(1), 97-115, 2005

General mean-covariance case unknown!

M. Calvo, J. M. Oller, "A distance between elliptical distributions based in an embedding into the Siegel group," Journal of Computational and Applied Mathematics, 145(2), 319-334, 2002

P. S. Eriksen, "Geodesics connected with the Fischer metric on the multivariate normal manifold," Institute of Electronic Systems, Aalborg University Centre, 1986

M. Pilté, F. Barbaresco, "Tracking quality monitoring based on information geometry and geodesic shooting," 17th International Radar Symposium (IRS) (pp. 1-6). IEEE, 2016

• Design

- Examples of f and $\boldsymbol{\theta}$ from elliptical distributions
- \cdot Remark that $heta \in \mathcal{M} \Longrightarrow$ pretext to re-define Riemannian tools

• Analyze

- Information geometry
- Intrinsic Cramér-Rao bounds

• Solve

- Riemannian optimization and geodesic convexity
- Examples where numerical stability is improved

• Apply

• Change detection in satellite image time series

Cramér-Rao lower bound (CRLB)

CRLB: If $\mathbf{x} \sim f(\mathbf{x}, \boldsymbol{\theta})$, then for $\hat{\boldsymbol{\theta}}$ unbiased estimator of $\boldsymbol{\theta}$ as a vector!

$$\mathbb{E}\left\{ (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}) (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta})^T \right\} \succeq \mathbf{F}^{-1}(\boldsymbol{\theta}) \quad \Rightarrow \quad \text{MSE} \geq \text{Tr}\left\{ \mathbf{F}^{-1}(\boldsymbol{\theta}) \right\}$$

iCRLB

with the **Fisher information matrix** $\mathbf{F}(\boldsymbol{\theta}) = -\mathbb{E}\left\{ \left. \frac{\partial^2 \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^T} \right|_{\boldsymbol{\theta}} \right\}$

Slepian-Bangs formula: if $\mathbf{x} \sim \mathcal{CN}(\boldsymbol{\mu}(\boldsymbol{\theta}), \boldsymbol{\Gamma}(\boldsymbol{\theta}))$

$$[\mathbf{F}(\boldsymbol{\theta})]_{ij} = 2\mathfrak{Re}\left\{\left.\frac{\partial\boldsymbol{\mu}^{H}(\boldsymbol{\theta})}{\partial\theta_{i}}\right|_{\boldsymbol{\theta}}\boldsymbol{\Gamma}^{-1}(\boldsymbol{\theta})\left.\frac{\partial\boldsymbol{\mu}(\boldsymbol{\theta})}{\partial\theta_{j}}\right|_{\boldsymbol{\theta}}\right\} + \mathrm{Tr}\left\{\boldsymbol{\Gamma}^{-1}(\boldsymbol{\theta})\left.\frac{\partial\boldsymbol{\Gamma}(\boldsymbol{\theta})}{\partial\theta_{i}}\right|_{\boldsymbol{\theta}}\boldsymbol{\Gamma}^{-1}(\boldsymbol{\theta})\left.\frac{\partial\boldsymbol{\Gamma}(\boldsymbol{\theta})}{\partial\theta_{j}}\right|_{\boldsymbol{\theta}}\right\}$$

O. Besson, Y. I. Abramovich, "On the Fisher information matrix for multivariate elliptically contoureddistributions," IEEE Signal Processing Letters, 20(11), 1130-1133, 2013 \rightarrow for CES!

28

"Constrained" CRLB (cCRLB)

Constraints: If elements of θ are linked by some system

$$h_k(\theta_1, \theta_2, \dots, \theta_P) = 0, \ k \in \llbracket 1, M \rrbracket \iff \mathbf{h}(\boldsymbol{\theta}) = \mathbf{0}$$

 $\mathbf{F}(oldsymbol{ heta})$ becomes singular \Rightarrow no proper CRLB

cCRLB: we still have

$$\mathbb{E}\left\{ (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}) (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta})^T \right\} \succeq \mathbf{U}(\boldsymbol{\theta}) \left(\mathbf{U}^T(\boldsymbol{\theta}) \mathbf{F}(\boldsymbol{\theta}) \mathbf{U}(\boldsymbol{\theta}) \right)^{-1} \mathbf{U}^T(\boldsymbol{\theta})$$

with $\mathbf{U}(\boldsymbol{\theta})$ such that $\mathbf{H}(\boldsymbol{\theta})\mathbf{U}(\boldsymbol{\theta}) = \mathbf{0}$ and $\mathbf{U}^{T}(\boldsymbol{\theta})\mathbf{U}(\boldsymbol{\theta}) = \mathbf{I}_{M}$, and $\mathbf{H}(\boldsymbol{\theta}) = \frac{\partial \mathbf{h}(\boldsymbol{\theta})}{\boldsymbol{\theta}^{T}}\Big|_{\boldsymbol{\theta}}$

J. D. Gorman, A. O. Hero, "Lower bounds for parametric estimation with constraints," IEEE Transactions on Information Theory, 36(6), 1285-1301, 1990

But what if $\theta \in \mathcal{M}$?

• Parameterization and constraints ?

- Difficult to have a system of coordinates
- Difficult (or impossible) to express constraints as $\mathbf{h}(\boldsymbol{\theta})$

• Performance measure ?

- Can we bound a Riemannian distance rather than the MSE ?
- · Non-trivial function \Rightarrow no Jacobian

\rightarrow We can turn to the framework of $intrinsic\ CRLB$ (iCRLB)

S. T. Smith, "Covariance, subspace, and intrinsic crame/spl acute/r-rao bounds. IEEE Transactions on Signal Processing," 53(5), 1610-1630, 2005

e.g. subspaces e.g. PSD for \mathcal{H}_p^{++}

 Riem. Opt.

Estim. CES

CD SITS

Riemannian framework of iCRLB

Definitions:

- $\cdot \ heta \in \mathcal{M}$ with tangent space $T_ heta \mathcal{M}$
- $\cdot \ \hat{\theta} \in \mathcal{M}$ estimate of θ
- $\langle \cdot, \cdot \rangle_{\theta}$ <u>chosen</u> Riemannian metric
- + $\operatorname{dist}(\cdot,\cdot)$ induced Riemannian distance
- $\{\xi_i\}$ corresponding orthonormal basis of $T_ heta \mathcal{M}$

Riemannian logarithm $\boldsymbol{\epsilon} = \log_{\theta} \hat{\theta} \in T_{\theta} \mathcal{M}$

- Points from θ to $\hat{\theta}$ with $||\log_{\theta} \hat{\theta}||_{\theta}^2 = \mathrm{dist}^2(\theta, \hat{\theta})$
- \cdot Would be " $\hat{oldsymbol{ heta}}-oldsymbol{ heta}$ " in the Euclidean setup
- · In coordinates $[m{\epsilon}]_i = \langle \log_ heta \hat{ heta}, \xi_i
 angle_ heta$

Error measure = $\mathrm{dist}^2(heta, \hat{ heta})$

Fisher information metric/matrix

Fisher information metric For $f({\mathbf{x}_k}; \theta)$ p.d.f. parameterized by $\boldsymbol{\theta} \in \mathcal{M}$

$$\langle \xi, \xi \rangle_{\theta}^{\mathrm{FIM}} = -\mathbb{E} \left[\left. \left. \frac{\mathrm{d}^2}{\mathrm{d}t^2} \ln f(\{\mathbf{x}_k\}; \theta + t\xi) \right|_{t=0} \right] \right]$$

Fisher information matrix represented in coordinates $\{\xi_i\}$ by

$$\left[\mathbf{F}\right]_{ij} = \langle \xi_i, \xi_j \rangle_{\theta}^{\mathrm{FIM}}$$

Remarks

- $\langle \cdot, \cdot \rangle_{\theta}^{\text{FIM}}$ defines a metric for $T_{\theta}\mathcal{M} \Rightarrow$ **information geometry** for \mathcal{M}
- Error measured from $\langle \cdot, \cdot \rangle_{ heta}$, which can be different

		. iCRLB			CD SITS
	00000		00000	000000000	

Intrinsic CRLB

Intrinsic CRLB (iRCLB)

Assuming model $f({\mathbf{x}_k}; \boldsymbol{\theta})$ and unbiased estimator $\hat{\theta}$, we have

$$\mathbb{E}\left[(\log_{\theta} \hat{\theta})(\log_{\theta} \hat{\theta})^{H}\right] \succeq \mathbf{F}^{-1} - \underbrace{\frac{1}{3}\left(\mathbf{F}^{-1}\mathbf{R}_{m}\left(\mathbf{F}^{-1}\right) + \mathbf{R}_{m}\left(\mathbf{F}^{-1}\right)\mathbf{F}^{-1}\right) + \mathcal{O}(\lambda_{\max}(\mathbf{F}^{-1})^{2+1/2})}_{\mathbf{F}^{-1}}$$

Riemannian curvature terms (cf. [Boumal14, Eq.6.6])

Remarks

• \mathbf{F}^{-1} depends on $\langle \cdot, \cdot
angle_{ heta} \Rightarrow$ iCRLB indeed changes w.r.t. d

"(·)⁻¹" inverse of a tensor (defined w.r.t. a metric)

- Bias terms + more about curvature in [Smitho5]
- Neglecting the curvature terms, we have in trace $\mathbb{E}\left\{\operatorname{dist}^{2}(\hat{\theta},\theta)\right\} \geq \operatorname{Tr}\left\{\mathbf{F}^{-1}\right\}$

Intro DDD	Design <i>f</i> 000000000000	Manifolds	Info. Geom. 000000	iCRLB	Riem. Opt.	Estim. CES	CD SITS

Wrapping up

iCRLB cooking recipe

- 1. Compute $\langle \xi, \xi \rangle_{\theta}^{\text{FIM}} = -\mathbb{E} \left[\left. \frac{\mathrm{d}^2}{\mathrm{d}t^2} \ln f(\{\mathbf{x}_k\}; \theta + t\xi) \right|_{t=0} \right]$ and polarization for $\langle \xi_i, \xi_j \rangle_{\theta}^{\text{FIM}}$
- 2. Chose the error metric $\langle \cdot, \cdot \rangle_{\theta} \longrightarrow \begin{cases} \text{ error distance dist} \\ \text{ orthonormal basis } \{\xi_i\} \text{ of } T_{\theta}\mathcal{M} \end{cases}$
- 3. Compute the Fisher information matrix: $[\mathbf{F}]_{ij} = \langle \xi_i, \xi_j \rangle_{ heta}^{\mathrm{FIM}}$
- 4. Bound the expected distance as $\mathbb{E}\left\{\mathrm{dist}^2(\hat{\theta}, \theta)\right\} \geq \mathrm{Tr}\left\{\mathbf{F}^{-1}\right\}$

Interest?

- Bounding other distances: neat formulas, reveals unexpected things (intrinsic bias)
- Parameterization from $T_{\theta}\mathcal{M} \rightarrow$ useful even in the Euclidean case!

Example 1: iCRLB for covariance matrix estimation in CES (1/2)

Model $\mathbf{x} \sim C\mathcal{ES}(\mathbf{0}, \boldsymbol{\Sigma}, g)$ with pdf $f(\mathbf{x}) \propto |\boldsymbol{\Sigma}|^{-1}g(\mathbf{x}^{H}\boldsymbol{\Sigma}^{-1}\mathbf{x})$, and representation

 $\mathbf{x} \stackrel{d}{=} \sqrt{\mathcal{Q}} \mathbf{\Sigma}^{1/2} \mathbf{u} \quad \text{with} \begin{cases} \mathbf{u} \text{ uniformly distributed on the unit sphere } \mathbf{u} \sim \mathcal{U}(\mathbb{C}S^p) \\ \mathcal{Q} \text{ independent modular variate, pdf related to } g \end{cases}$

 $\begin{array}{ll} \textbf{Manifold } \boldsymbol{\Sigma} \in \mathcal{H}_p^{++} \text{ with tangent space } \boldsymbol{T}_{\boldsymbol{\Sigma}} \mathcal{H}_p^{++} = \mathcal{H}_p \\ \text{(Hermitian pd matrices)} & (\text{Hermitian matrices}) \end{array}$

Error metric: "natural" Riemannian metric and distance for \mathcal{H}_p^{++}

 $\langle \xi_i, \xi_j \rangle_{\Sigma} = \operatorname{Tr} \left\{ \Sigma^{-1} \xi_i \Sigma^{-1} \xi_j \right\}$ inducing $\operatorname{dist}^2_{\mathcal{H}^{++}_r}(\Sigma, \hat{\Sigma}) = ||\log \Sigma^{-1/2} \hat{\Sigma} \Sigma^{-1/2}||_F^2$
Example 1: iCRLB for covariance matrix estimation in CES (2/2)

Fisher information metric for CES

Let $\{\mathbf{x}_i\}_{i=1}^n$ in \mathbb{C}^p with $\mathbf{x} \sim \mathcal{CES}(\mathbf{0}, \mathbf{\Sigma}, g)$, then

$$\langle \xi_i, \xi_j \rangle_{\Sigma}^{\mathrm{FIM}} = n \alpha_g \operatorname{Tr} \left\{ \Sigma^{-1} \xi_i \Sigma^{-1} \xi_j \right\} + n \beta_g \operatorname{Tr} \left\{ \Sigma^{-1} \xi_i \right\} \operatorname{Tr} \left\{ \Sigma^{-1} \xi_j \right\}$$

with
$$\alpha_g = 1 - \frac{\mathbb{E}[Q^2 \phi'(Q)]}{M(M+1)}$$
 and $\beta_g = \alpha - 1$ using $\phi(t) = g'(t)/g(t)$

iCRLB for Σ

Let $\{\mathbf{x}_i\}_{i=1}^n$ in \mathbb{C}^p with $\mathbf{x} \sim \mathcal{CES}(\mathbf{0}, \mathbf{\Sigma}, g)$

$$\mathbb{E}\left[\operatorname{dist}^{2}_{\mathcal{H}^{++}_{p}}\left(\hat{\boldsymbol{\Sigma}},\boldsymbol{\Sigma}\right)\right] \geq \frac{1}{n}\left(\frac{p^{2}-1}{\alpha_{g}} + \frac{1}{\alpha_{g}(p+1)-p}\right)$$

aka "affine invariant"

Example 2: probabilistic PCA in CES (1/2)

Probabilistic PCA (PPCA)

 $\mathbf{x} \stackrel{d}{=} \mathbf{W} \mathbf{s} + \mathbf{n}$

with
$$\mathbf{W} \in \mathbb{C}^{p imes k}$$
, $\mathbf{s} \sim \mathbb{C}\mathcal{N}(\mathbf{0},\mathbf{I}_k)$, $\mathbf{n} \sim \mathbb{C}\mathcal{N}(\mathbf{0},\mathbf{I}_p)$

Structured covariance matrix low-rank + identity

 $\mathbb{E}[\mathbf{x}\mathbf{x}^{H}] = \mathbf{\Sigma} = \mathbf{H} + \mathbf{I}, \text{ with } \operatorname{rank}(\mathbf{H}) = k$

CES-PPCA generalizes the model to $\mathbf{x} \sim CES(\mathbf{0}, \mathbf{H} + \mathbf{I}, g)$

M. E. Tipping, C. M Bishop, "Probabilistic principal component analysis," Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3), 611-622., 1999 ICRI B

Example 2: probabilistic PCA in CES (1/2)

Model: $\mathbf{x} \sim \mathcal{CES}(\mathbf{0}, \mathbf{H} + \mathbf{I}, g)$, with $\mathbf{H} \in \mathcal{H}_{p,k}^+$ (H-psd of rank k) Manifold: $\mathbf{H} = \mathbf{U} \Sigma \mathbf{U}^H \in \mathcal{H}_{n,k}^+$ as $(\mathrm{St}(p,k) \times \mathcal{H}_k^{++})/\mathcal{U}_k$

Error metric:

$$\langle \bar{\xi}, \bar{\eta} \rangle_{\bar{\theta}} = \underbrace{\mathfrak{Re}(\mathrm{Tr}(\xi_{\mathbf{U}}^{H}(\mathbf{I}_{p} - \frac{1}{2}\mathbf{U}\mathbf{U}^{H})\boldsymbol{\eta}_{\mathbf{U}}))}_{\text{canonical on St}(p,k)} + \underbrace{\alpha \mathrm{Tr}(\boldsymbol{\Sigma}^{-1}\boldsymbol{\xi}_{\boldsymbol{\Sigma}}\boldsymbol{\Sigma}^{-1}\boldsymbol{\eta}_{\boldsymbol{\Sigma}}) + \beta \mathrm{Tr}(\boldsymbol{\Sigma}^{-1}\boldsymbol{\xi}_{\boldsymbol{\Sigma}})\mathrm{Tr}(\boldsymbol{\Sigma}^{-1}\boldsymbol{\eta}_{\boldsymbol{\Sigma}})}_{\text{affine invariant on }\mathcal{H}_{k}^{++}}$$

iCRLB for subspace

Let $\{\mathbf{x}_i\}_{i=1}^n$ in \mathbb{C}^p with $\mathbf{x} \sim \mathcal{CES}(\mathbf{0}, \mathbf{U} \operatorname{diag}(\{\sigma_r\}_{r=1}^k)\mathbf{U}^H + \mathbf{I}, q)$

$$\mathbb{E}\left[\operatorname{dist}^{2}_{\mathcal{G}_{p,k}}\left(\operatorname{span}(\hat{\mathbf{U}}),\operatorname{span}(\mathbf{U})\right)\right] \geq \frac{p-k}{n\alpha_{g}}\sum_{r=1}^{k}\frac{1+\sigma_{r}}{\sigma_{r}^{2}}$$

Intro DDD	Design <i>f</i> 000000000000	Manifolds	Info. Geom.	iCRLB 00000000000	Riem. Opt.	Estim. CES 000000000	CD SITS

• Design

Outline

- Examples of f and $\boldsymbol{\theta}$ from elliptical distributions
- \cdot Remark that $heta \in \mathcal{M} \Longrightarrow$ pretext to re-define Riemannian tools

• Analyze

- Information geometry
- Intrinsic Cramér-Rao bounds

• Solve

- Riemannian optimization and geodesic convexity
- Examples where numerical stability is improved

• Apply

• Change detection in satellite image time series

Intro DDD	Design <i>f</i> 000000000000	Manifolds	Info. Geom.	iCRLB 00000000000	Riem. Opt.	Estim. CES 000000000	CD SITS aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Riema	annian optim	ization					

$\underset{\theta \in \mathcal{M}}{\text{minimize}} \quad f(\theta)$

Riemannian optimization: a framework for optimization on \mathcal{M} equipped with $\langle \cdot, \cdot \rangle$.

Descent direction of f at θ :

 $\xi \in T_{\theta}\mathcal{M}, \quad \mathrm{D}f(\theta)[\xi] < 0$

Riemannian gradient of f at θ :

 $\langle \operatorname{grad} f(\theta), \xi \rangle_{\theta} = \operatorname{D} f(\theta)[\xi]$

			Riem. Opt.		
000	00000	000000		000000000	

Riemannian optimization

Main ingredients

- Descent direction: $\xi \in T_{\theta}\mathcal{M}$ so that $\langle \operatorname{grad} f(\theta), \xi \rangle_{\theta} < 0$
- Retraction of ξ on $\mathcal M$ (smooth mapping)

Flexibility: metric, retraction, descent method (gradient, conjugate gradient, BFGS...)

Intro Design f Manifolds Info. Geom. iCRLB **Riem. Opt.** Estim. CES CD SITS

Intro Design f Manifolds Info. Geom. iCRLB Riem. Opt. Estim. CES CD SITS

Geodesic convexity (g-convexity)

 \mathcal{M} is a *g*-convex set w.r.t. geodesic $\gamma(t)$, if $\forall \ \theta_1, \theta_2 \in \mathcal{M}, \gamma(t) \in \mathcal{M}$

Example:
$$\mathcal{H}_p^{++}$$
 is *g*-convex w.r.t. $\Sigma(t) = \Sigma_1^{1/2} \left(\Sigma_1^{-1/2} \Sigma_2 \Sigma_1^{-1/2} \right)^t \Sigma_1^{1/2}$

f is a *g*-convex function if $\forall \theta_1, \theta_2 \in \mathcal{M}$, *f* is convex on geodesic $\gamma(t)$, i.e $f(\gamma(t)) \leq t f(\theta_1) + (1-t) f(\theta_2)$

Property If f is g-convex then any local minimizer is a global minimizer on \mathcal{M}

Outline

• Design

- Examples of f and $\boldsymbol{\theta}$ from elliptical distributions
- \cdot Remark that $heta \in \mathcal{M} \Longrightarrow$ pretext to re-define Riemannian tools

• Analyze

- Information geometry
- Intrinsic Cramér-Rao bounds

• Solve

- Riemannian optimization and geodesic convexity
- Examples where numerical stability is improved

• Apply

• Change detection in satellite image time series

Example 1: regularized covariance matrix estimation in CES (1/3)

*M***-Estimators of the scatter**

The minimizers of the objective function \sim CES log-likelihood

$$\mathcal{L}(\boldsymbol{\Sigma}) = -\frac{1}{n} \sum_{i=1}^{n} \ln g \left(\mathbf{x}_{i}^{H} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i} \right) + \ln |\boldsymbol{\Sigma}|$$

Satisfy the fixed-point equation

$$\boldsymbol{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} u(\mathbf{x}_{i}^{H} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}) \ \mathbf{x}_{i} \mathbf{x}_{i}^{H} \stackrel{\Delta}{=} \mathcal{H}_{u}(\boldsymbol{\Sigma})$$
with $u = -g'(t)/g(t)$

Studied in the 70 \sim 80's, modern interest due to <code>robustness</code> and <code>new insights</code>

- \mathcal{L} is *g*-convex following the geodesics $\Sigma(t) = \Sigma_1^{1/2} (\Sigma_1^{-1/2} \Sigma_2 \Sigma_1^{-1/2})^t \Sigma_1^{1/2}$
- $\Sigma_{t+1} = \mathcal{H}_u(\Sigma_t)$ is a **majorization-minimization** algorithm

A. Wiesel, "Geodesic convexity and covariance estimation," IEEE TSP, 60(12), 6182-6189, 2012

Example 1: regularized covariance matrix estimation in CES (2/3)

Example 1: regularized covariance matrix estimation in CES (3/3)

Issue: optimality/uniqueness guaranteed, but existence requires n > p

Solution: regularization methods driven by *g*-convexity

$$\mathcal{L}_{\mathcal{P}}(\boldsymbol{\Sigma}) = \sum_{i=1}^{n} \ln g \left(\mathbf{x}_{i}^{H} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i} \right) + n \ln |\boldsymbol{\Sigma}| + \alpha \mathcal{P}(\boldsymbol{\Sigma})$$

Shrinkage to identity: $\mathcal{P}(\mathbf{\Sigma}) = \mathrm{Tr}\{\mathbf{\Sigma}^{-1}\}$ is g-convex

$$\boldsymbol{\Sigma}(\alpha) = \frac{1}{n} \sum_{i=1}^{n} u(\mathbf{x}_{i}^{H} \boldsymbol{\Sigma}^{-1}(\alpha) \mathbf{x}_{i}) \mathbf{x}_{i} \mathbf{x}_{i}^{H} + \alpha \mathbf{I}$$

Can exist for n < p!

Estim. CES

Many **generalizations** and **optimal selection** of α for various criterions

E. Ollila, D. E. Tyler, "Regularized *M*-estimators of scatter matrix," IEEE TSP, 62(22), 6059-6070, 2014

Example 2: robust mean and covariance estimation (1/3)

Jointly estimate μ and Σ for $\mathbf{x} \sim \mathcal{CES}\left(\mu, \Sigma
ight)$

*M***-estimators** of location and scatter

$$\boldsymbol{\mu} = \left(\sum_{i=1}^{n} u_1(t_i)\right)^{-1} \sum_{i=1}^{n} u_1(t_i) \mathbf{x}_i \qquad \boldsymbol{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} u_2(t_i) (\mathbf{x}_i - \boldsymbol{\mu}) (\mathbf{x}_i - \boldsymbol{\mu})^H$$

where $t_i \stackrel{\Delta}{=} (\mathbf{x}_i - \boldsymbol{\mu})^H \boldsymbol{\Sigma}^{-1} (\mathbf{x}_i - \boldsymbol{\mu})$, and u_1, u_2 respect conditions in [Maronna76]

Tyler's estimator

$$\boldsymbol{\mu} = \left(\sum_{i=1}^{n} \frac{1}{\sqrt{t_i}}\right)^{-1} \sum_{i=1}^{n} \frac{\mathbf{x}_i}{\sqrt{t_i}} \qquad \qquad \boldsymbol{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} \frac{(\mathbf{x}_i - \boldsymbol{\mu})(-\boldsymbol{\mu})^H}{t_i}$$

Possible fixed-point issues when $t_i \simeq 0$ 48

Example 2: robust mean and covariance estimation (2/3)

Alternatively when $\mu = 0$: Tyler's estimator \Leftrightarrow MLE for scaled Gaussian $\mathbf{x}_i \sim \mathcal{CN}(\mathbf{0}, \tau_i \Sigma)$

Transposed to non-zero mean $\mathbf{x}_i \sim \mathcal{CN}(\boldsymbol{\mu}, \tau_i \boldsymbol{\Sigma})$

$$\underset{\boldsymbol{\mu},\{\tau_i\}_{i=1}^n,\boldsymbol{\Sigma}}{\text{maximize}} \quad \sum_{i=1}^n \left[\ln |\tau_i \boldsymbol{\Sigma}| + \frac{(\mathbf{x}_i - \boldsymbol{\mu})^H \boldsymbol{\Sigma}^{-1} (\mathbf{x}_i - \boldsymbol{\mu})}{\tau_i} \right]$$

yields

$$\boldsymbol{\mu} = \left(\sum_{i=1}^{n} \frac{1}{t_i}\right)^{-1} \sum_{i=1}^{n} \frac{\mathbf{x}_i}{t_i} \qquad \boldsymbol{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} \frac{(\mathbf{x}_i - \boldsymbol{\mu})(-\boldsymbol{\mu})^H}{t_i}$$

slightly different but fixed-point iterations diverge in practice!

Example 2: robust mean and covariance estimation (3/3)

Product manifold
$$\mathcal{M}_{p,n} \in \mathbb{C}^p \times (\mathbb{R}^+_{\star})^n \times \mathcal{SH}_p^{++}$$
 with *decoupled* metric
 $(\mathcal{H}_p^{++} \cap \det = 1)$
 $\langle \xi, \eta \rangle_{\theta}^{\mathcal{M}_{p,n}} = \underbrace{\mathfrak{Re}\{\xi_{\mu}^H \eta_{\mu}\}}_{\text{canonical on } \mathbb{C}^p} + \underbrace{(\tau^{\odot -1} \odot \xi_{\tau})^T (\tau^{\odot -1} \odot \eta_{\tau})}_{\text{canonical on } (\mathbb{R}^+_{\star})^n} + \underbrace{\operatorname{Tr}(\Sigma^{-1}\xi_{\Sigma}\Sigma^{-1}\eta_{\Sigma})}_{\text{Natural Riem. on } \mathcal{SH}_p^{++}}$

And resulting:

- Riemannian gradient descent
- Surprisingly stable and accurate estimator
- Still... slow convergence
- Faster with information geometry to appear!

Example 3: robust estimator for spiked models in CES (1/2)

Spiked Tyler's estimator

$$\begin{array}{ll} \underset{\boldsymbol{\Sigma}}{\text{minimize}} & \frac{p}{n} \sum_{i=1}^{n} \ln \left(\mathbf{x}_{i}^{H} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i} \right) + \ln |\boldsymbol{\Sigma}| \\ \text{subject to} & \boldsymbol{\Sigma} = \mathbf{H} + \sigma^{2} \mathbf{I}, \text{ with } \mathbf{H} \in \mathcal{H}_{p,k}^{+} \end{array}$$

Existing MM algorithm

1. Usual fixed point iteration

$$\boldsymbol{\Sigma}_{t+1/2} = \frac{p}{n} \sum_{i=1}^{n} \frac{\mathbf{x}_i \mathbf{x}_i^H}{\mathbf{x}_i^H \boldsymbol{\Sigma}_t^{-1} \mathbf{x}_i}$$

2. Projection on the structured set

$$\mathbf{\Sigma}_{t+1} = \mathcal{P}_{\mathcal{H}_{p,k}^+}\left(\mathbf{\Sigma}_{t+1/2}
ight)$$

where $\mathcal{P}_{\mathcal{H}_{p,k}^+}$ averages the last p-k eigenvalues (SVD)

can diverge with small n

Y. Sun et al. "Robust estimation of structured covariance matrix for heavy-tailed elliptical distributions," IEEE TSP, 2016

Example 3: robust estimator for spiked models in CES (2/2)

Riemannian optimization for

 $\underset{\mathbf{H} \in \mathcal{H}_{p,k}^+}{\text{minimize}} \quad \mathcal{L}_{\mathrm{Ty}}(\mathbf{H} + \mathbf{I})$

with $\mathbf{H} = \mathbf{U} \Sigma \mathbf{U}^H \in (\mathrm{St}(p,k) \times \mathcal{H}_k^{++}) / \mathcal{U}_k$

using the metric

$$\langle \bar{\xi}, \bar{\eta} \rangle_{\bar{\theta}} = \underbrace{\mathfrak{Re}(\mathrm{Tr}(\xi_{\mathrm{U}}^{H}(\mathbf{I}_{p} - \frac{1}{2}\mathbf{U}\mathbf{U}^{H})\boldsymbol{\eta}_{\mathrm{U}}))}_{\text{canonical on St}(p,k)} + \underbrace{\alpha \mathrm{Tr}(\boldsymbol{\Sigma}^{-1}\boldsymbol{\xi}_{\boldsymbol{\Sigma}}\boldsymbol{\Sigma}^{-1}\boldsymbol{\eta}_{\boldsymbol{\Sigma}}) + \beta \mathrm{Tr}(\boldsymbol{\Sigma}^{-1}\boldsymbol{\xi}_{\boldsymbol{\Sigma}})\mathrm{Tr}(\boldsymbol{\Sigma}^{-1}\boldsymbol{\eta}_{\boldsymbol{\Sigma}})}_{\text{affine invariant on }\mathcal{H}_{k}^{++}}$$

 \rightarrow Riemannian gradient descent (T-RGD) and trust region (T-RTR) algorithms

 $T_{\theta}\overline{\mathcal{M}}_{p,k}$

 $0 \mapsto (U0, 0^T S0)$

 $\overline{\mathcal{M}}_{p,k}$

pSCM T-MM T-RGD T-RTR

Numerical illustrations: *t*-distribution p = 16, k = 8, SNR $\simeq 15$ dB

53

• Design

- Examples of f and $\boldsymbol{\theta}$ from elliptical distributions
- \cdot Remark that $heta \in \mathcal{M} \Longrightarrow$ pretext to re-define Riemannian tools

• Analyze

- Information geometry
- Intrinsic Cramér-Rao bounds

• Solve

- Riemannian optimization and geodesic convexity
- Examples where numerical stability is improved

• Apply

• Change detection in satellite image time series

Change detection in satellite image time-series

Monitoring natural disasters:

PolSAR images of Ishinomaki and Onagawa areas [Sato, 2012], Nov.2010 (left), Apr.2011 (right).

Problems to consider

Huge increase in the number of available acquisitions:

- Sentinel-1: 12 days repeat cycle, since 2014
- TerraSAR-X: 11 days repeat cycle, since 2007
- UAVSAR, ...

Detect changes

- ullet Massive amount of data \longrightarrow Automatic process
- \bullet Unlabeled data \longrightarrow Unsupervised detection

Chosen approach: detection based on covariance matrix (statistical approaches)

						CD SITS
000	000000000000	00000	00000	00000	000000000	

2-step change detection

- Covariance matrix estimation (feature extraction)
- Evaluation of a **distance** (feature comparison)

Covariance matrix estimation

Sample covariance matrix (SCM)

Let $\{\mathbf{x}_i\}_{i=1}^n$ following $\mathbf{x} \sim \mathbb{C}\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$, the ML estimate of $\mathbf{\Sigma}$ is

$$\hat{\boldsymbol{\Sigma}}_{ ext{SCM}} = rac{1}{n}\sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^H$$

- Simple to implement
- Wishart distributed \longrightarrow well established properties
- Not robust to non-Gaussian/outliers (cf. Part 2)

Distances between covariance matrices

 $d_{\mathrm{Fro}}(\boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_2) = \|\boldsymbol{\Sigma}_1 - \boldsymbol{\Sigma}_2\|_{E}^2$ Frobenius $d_{\text{Log}}(\boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_2) = \|\log(\boldsymbol{\Sigma}_1) - \log(\boldsymbol{\Sigma}_2)\|_{F}^2$ Spectral Log Hotelling-Lawley $d_{\mathrm{HTL}}(\boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_2) = \mathrm{Tr}\left\{\boldsymbol{\Sigma}_1 \boldsymbol{\Sigma}_2^{-1}\right\}$ $d_{\mathrm{KL}}(\boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_2) = \mathrm{Tr}\left\{\boldsymbol{\Sigma}_1^{-1}\boldsymbol{\Sigma}_2\right\} + \log\left(|\boldsymbol{\Sigma}_1|/|\boldsymbol{\Sigma}_2|\right)$ KL divergence $d_{\mathrm{W}}(\boldsymbol{\Sigma}_{1},\boldsymbol{\Sigma}_{2}) = \mathrm{Tr}\left\{\boldsymbol{\Sigma}_{1} + \boldsymbol{\Sigma}_{2} - 2\left(\boldsymbol{\Sigma}_{2}^{1/2}\boldsymbol{\Sigma}_{1}\boldsymbol{\Sigma}_{2}^{1/2}\right)^{1/2}\right\}$ Wasserstein $d_{\text{Bao}}(\boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_2) = \alpha \sum_{i=1}^p \log^2 \lambda_i + \beta \left(\sum_{i=1}^p \log \lambda_i \right)^2$ Rao $\{\lambda_i\}_{i=1}^p = \operatorname{eig}(\Sigma_1^{-1}\Sigma_2)$

Manifolds

Info. Geo

CRLB 200000000000 Riem. Opt.

stim. CES

CD SITS

Dataset

UAVSAR SanAnd_26524_03

- CD between April 2009 May 2011 [Nascimento19]
- Polarimetric data \longrightarrow wavelet decomposition $\longrightarrow p = 12$ dim. pixels

A. Mian, G. Ginolhac, J-P. Ovarlez, A. Breloy, F. Pascal, "An Overview of Covariance-based Change Detection Methodologies in Multivariate SAR Image Time Series," Change Detection and Image Time Series Analysis, 2021

Intro	Design <i>f</i> 00000000000000	Manifolds	Info. Geom.	iCRLB	Riem. Opt.	Estim. CES	CD SITS

Compared detectors

- Plug-in detectors using SCMs (T = 2)
 - $\Lambda_{\rm HTL}$ Hotelling-Lawley divergence
 - $\Lambda_{\rm KL}$ KL divergence
 - $\Lambda_{\mathcal{RG}}$ Riemannian distance (Rao distance with $\alpha = 1, \beta = 0$)
 - $\Lambda_{\mathcal{WG}}$ Wasserstein distance
- Gaussian detection criteria
 - $\Lambda_{\rm G}~{\mbox{GLRT}}$
 - Λ_{t_1} Terrell statistic
 - Λ_{Wald} Wald statistic

				CD SITS
000	 00000	00000	 0000	

Results scene 1-2 (T = 2)

ROC plots using a 5×5 local window for the scenes 1 and 2.

Conclusion on 2-step change detection

SCM plug-in detectors

$$\Lambda(\{\{\mathbf{x}_i^t\}_{i=1}^n\}_{t=1}^T) = d(\hat{\boldsymbol{\Sigma}}_{\text{SCM}}^1, \hat{\boldsymbol{\Sigma}}_{\text{SCM}}^2)$$

Advantages

- Practical anf flexible
- SCM is Wishart
- Various distances (invariances)
- Can change plug-in SCMs

Limitations

- T=2
- CFAR: case by case study
- 2-step \rightarrow "suboptimal"?
- Indirect link with $f(\mathbf{x}, \theta)$

Riem. Opt.

t = 1

stim. CES 1000000000 CD SITS

Change detection with GLRT

Parametric probability model

$$\mathbf{Z}_t \sim \mathcal{L}(\mathbf{Z}_t; \boldsymbol{\theta}_t)$$

Hypothesis test

$$\left\{ \begin{array}{ll} \mathrm{H}_{0}: \quad \boldsymbol{\theta}_{1} = \boldsymbol{\theta}_{2} \quad (\textit{no change}) \\ \mathrm{H}_{1}: \quad \boldsymbol{\theta}_{1} \neq \boldsymbol{\theta}_{2} \quad (\textit{change}) \end{array} \right.$$

GLRT

$$\frac{\max\limits_{\boldsymbol{\theta}_{1},\boldsymbol{\theta}_{2}} \quad \mathcal{L}\left(\left\{\mathbf{Z}_{1},\mathbf{Z}_{2}\right\}; \ \left\{\boldsymbol{\theta}_{1},\boldsymbol{\theta}_{2}\right\}\right)}{\max\limits_{\boldsymbol{\theta}_{0}} \quad \mathcal{L}\left(\left\{\mathbf{Z}_{1},\mathbf{Z}_{2}\right\}; \ \boldsymbol{\theta}_{0}\right)} \underset{\mathrm{H}_{0}}{\overset{\mathrm{H}_{1}}{\underset{\mathrm{H}_{0}}{\gtrsim}} \lambda_{\mathrm{GLRT}}$$

 $p(\mathbf{z}; \boldsymbol{\theta}_1)$ z t = 2 $p(\mathbf{z}; \boldsymbol{\theta}_2)$ z

Empirical hints for the chosen model

Covariance based change detection

Models for the GLRT in SAR-ITS: appropriate choice of $\mathcal L$ and $\boldsymbol heta$

Gaussian

$$\mathbf{z} \sim \mathbb{C}\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$$
 $oldsymbol{ heta} = \mathbf{\Sigma}$

Low-rank Gaussian

$$\mathbf{z} \sim \mathbb{C}\mathcal{N}[\mathbf{0}][\mathbf{\Sigma}_k + \sigma^2 \mathbf{I}]$$
$$\boldsymbol{\theta} = \mathbf{\Sigma}, \text{ with } \operatorname{rank}(\mathbf{\Sigma}_k) = k$$

Compound-Gaussian

 $\mathbf{z}_i \sim \mathbb{C}\mathcal{N}[\mathbf{0}][au_i \mathbf{\Sigma}]$ $oldsymbol{ heta} = \{\mathbf{\Sigma}, \{ au_i\}\}$ Low-rank Compound-Gaussian $\mathbf{z}_i \sim \mathbb{C}\mathcal{N}[\mathbf{0}][\tau_i(\mathbf{\Sigma}_k + \sigma^2 \mathbf{I})]$

 $\boldsymbol{\theta} = \{\boldsymbol{\Sigma}, \{\tau_i\}\}, \text{ with } \operatorname{rank}(\boldsymbol{\Sigma}_k) = k$

Optimization handled with $\mathbf{\Sigma} = \mathbf{U}\mathbf{D}\mathbf{U}^H$ and previous techniques (Riemannian opt.)

Results with a 5×5 sliding windows: Gaussian detectors

Results with a 5×5 sliding windows: Robust detectors

Riem. Opt.

stim. CES

CD SITS

Performance curves (p = 12, k = 3)

 $P_{\rm D}$ vs window size at $P_{\rm FA}=5\%$