

Robust statistical framework for radar change detection applications - Part 1

Guillaume Ginolhac and Arnaud Breloy

and many thanks to: A. Mian, J-P. Ovarlez, A. Atto

IEEE Radar Conference - 26/09/2020

Content

1 Introduction

- Motivations
- Plan of this tutorial

Data

Motivating covariance based approaches

- Change detection problem
- Statistical detection framework
- Covariance for SAR CD

Plug-in Gaussian detectors (2-step CD)

- Principle
- Sample covariance matrix
- Matrix distances

Gaussian statistical criteria (1-step CD)

- Generalized likelihood ratio test.
- Terrell (gradient) statistic
- Wald statistic

Content

1 Introduction

- Motivations
- Plan of this tutorial
- Motivating covariance based approaches
 - Change detection problem
 - Statistical detection framework
 - Covariance for SAR CD
- Plug-in Gaussian detectors (2-step CD)
 - Principle
 - Sample covariance matrix
 - Matrix distances
 - - Generalized likelihood ratio test
 - Terrell (gradient) statistic
 - Wald statistic
 - **Experiments on UAVSAR data**
- **Conclusion of Part 1**

When remote sensing turns into big data

Remote sensing provides various images of the Earth's surface

Huge increase in the number of available acquisitions:

- Sentinel-1: 12 days repeat cycle, since 2014
- TerraSAR-X: 11 days repeat cycle, since 2007
- UAVSAR, ... thousands of flight paths planned

Problem

There is a need for algorithms to process this amount of data automatically!

3/59

00000000	0000000000	00000	000000000	0000000	

A focus on change detection problems

Various problems

- Target/pattern detection
- Segmentation, classification, clustering, ...
- Change Detection
- Change estimation (e.g., interferometry)

single snapshot single snapshot, time-series time-series time-series

Change detection

From a time-series, detect locations where changes occurred over time, e.g.:

- Man-made changes: appearance/disappearance of vehicles/buildings
- Natural disasters: floodings, fires, ...
- Small variations of terrain: glacier displacement, land subsidence

Change detection (CD) problem

Pixel-level methods

Decide if a change occurred locally (patches) between the observations

Many other approaches in the overview [Hussain et al., 2013]

	0000	 0000000	

Change detection application examples

Example 1/2: activity monitoring

Figure 1: Terrasar-X images of the Burning-man festival between two dates

IEEE RadarConf 2020

Change detection application examples

Example 2/2: disaster assessment

Figure 1: Destruction map of Dorian Hurricane using change detection over Sentinel-1 data

IEEE RadarConf 2020

A general framework for pixel-level methods

Two steps:

- Data extraction: transform the data to highlight changes we aim to detect
- Decision function: compute measure of dissimilarity between data/features

	0000000000	00000	aaaaaaaaa	0000000	

PART 1

- Sec.2: Data description
- Sec.3: Motivational for statistical and covariance based techniques
- Sec.4: Gaussian plug-in detectors (2-step approach)
- Sec.5: Gaussian statistical criteria (1 step detection)
- Sec.6: Experiments on UAVSAR data

PART 2

- Non-Gaussian models and robust detection
- Detection with structured covariance models

Content

ntroduction

- Motivations
- Plan of this tutorial

Data

- Change detection problem
- Statistical detection framework
- Covariance for SAR CD
- Plug-in Gaussian detectors (2-step CD)
 - Principle
 - Sample covariance matrix
 - Matrix distances
 - Gaussian statistical criteria (1-step CD
 - Generalized likelihood ratio test
 - Terrell (gradient) statistic
 - Wald statistic
 - Experiments on UAVSAR data
- **7** Conclusion of Part 1

	Data				
000000		0000	aaaaaaaaa	0000000	

Data: a focus on synthetic aperture radar data

Satellite/airborne remote sensing systems

- RGB optical imaging
- Multispectral/Hyperspectral imaging
- Active sensing: radar, synthetic aperture radar

Extensions

Tools from this presentation can be transposed, but require to check assumptions

- Optical images: positive data, non-zero mean, ...
- High dimension issues in hyperspectral imaging

2-Step CD

1-Step CD

UAVSAR

Conclusion

Synthetic aperture radar (SAR)

Advantages:

- All weather and illumination conditions (active technology)
- Very high-resolution (sub-meter) imaging
- Cover large areas

Comparison of optical and image

Intro 000000	Data 000=00000	Motivating CM	2-Step CD	1-Step CD	UAVSAR	
Data extra	ction (1/3)					

Feature selection

- Leverage **diversity** to improve the detection
- Requires to process **multivariate** pixels

Data extraction (2/3): raw data and polarimetry

Polarimetry $\mathbf{x} = [x_{HH}, x_{HV}, x_{VV}]^T \in \mathbb{C}^3$

- Pauli decomposition
- Krogager decomposition
- Cameron Decomposition
- H- α decomposition
- An so on...

SF Bay, Pauli basis (HH - VV, $\sqrt{2}HV$, HH + VV)

Overview available at https://earth.esa.int/documents/653194/656796/Polarimetric_Decompositions.pdf

IEEE RadarConf 2020

13/59

Data extraction (3/3): spectro-angular features [Mian et al., 2019]

Wavelet decompositions can retrieve dispersive/anisotropic behavior of the scatterers

UAVSAR

Conclusior

Multivariate SAR Images Time Series

IEEE RadarConf 2020

Some issues encountered with SAR images time series (1/2)

Co-registration

- Change detection requires accurate co-registration
- Can be challenging depending on the system (satellite vs plane)

Clutter noise

- Weak Signal to Noise Ratio (SNR)
- Multiplicative noise, Gaussian assumption often not valid

16/59

Some issues encountered with SAR images time series (2/2)

Lack of ground truth and labeled data

Obtaining reliable ground truth is extremely complicated and time-consuming

- Comparing with optical data
- Crossing with geographic databases
- Asking local authorities

Our take on this presentation

- Co-registration has been correctly performed
- We will consider **robust models** to handle the noise
- We will focus on the design of **non-supervised** approaches

Content

- Motivations
- Plan of this tutorial

Motivating covariance based approaches

- Change detection problem
- Statistical detection framework
- Covariance for SAR CD
- Plug-in Gaussian detectors (2-step CD)
 - Principle
 - Sample covariance matrix
 - Matrix distances
 - - Generalized likelihood ratio test.
 - Terrell (gradient) statistic
 - Wald statistic
 - **Experiments on UAVSAR data**
- **Conclusion of Part 1**

Intro 000000	Data 00000000	Motivating CM	2-Step CD	1-Step CD 000000000	UAVSAR	
Data: nota	tions					

IEEE RadarConf 2020

• Decision function: compute measure of dissimilarity between data

$$\begin{array}{rcl} \Lambda: & (\mathbb{C}^{p \times n})^T & \longrightarrow \mathbb{R} \\ & & \{\{\mathbf{x}_i^t\}_{i=1}^n\}_{t=1}^T & \longmapsto \Lambda(\{\{\mathbf{x}_i^t\}_{i=1}^n\}_{t=1}^T) \end{array}$$

• Detection threshold: decide that a change occurred if

 $\Lambda(\{\{\mathbf{x}_{i}^{t}\}_{i=1}^{n}\}_{t=1}^{T}) > \lambda$

- Ideally:
 - good trade-off between probability of detection/probability of false alarm (PD/PFA)
 - λ can be set in practice (e.g., CFAR property)

		Motivating CM			
000000	00000000		00000	 0000000	

Some classical univariate schemes (p = 1, T = 2)

Log-ratio

[Bazi et al., 2006]

$$\Lambda_{\log r}(\{x_i^1\}_{i=1}^n, \{x_i^2\}_{i=1}^n) = \sum_{i=1}^n \log(|x_i^1|/|x_i^2|)$$

Counters the multiplicative nature of the speckle

Coherent change detection (CCD)

$$\Lambda_{\rm CCD}(\{x_i^1\}_{i=1}^n, \{x_i^2\}_{i=1}^n) = \frac{2|\sum_{i=1}^n x_i y_i^*|}{\sum_{i=1}^n (|x_i|^2 + |y_i|^2)}$$

Highlight changes in the phase between acquisitions

Multivariate extensions [Novak, 2005, Barber, 2015]

- **Pros**: simple to implement
- Limitations: high PFA, univariate, bi-date

Parametric statistical detection (1/4)

- Can handle **multivariate data**
- Can account for **physical modeling** of the data/noise
- Strong theoretical guarantees from statistical literature

Parametric statistical detection (2/4)

• Probabilistic model on the observations:

$$\mathbf{x}_{i}^{t} \sim p_{\mathbf{x}_{i}^{t}}(\mathbf{x}_{i}^{t}; \boldsymbol{\theta}_{t}; \boldsymbol{\Phi}_{t}),$$

 $\begin{cases} \boldsymbol{\theta}_t : \text{Parameters of interest} \\ \boldsymbol{\Phi}_t : \text{Side parameters} \end{cases}$

• Detect a change in $\boldsymbol{\theta}_t \Leftrightarrow$ binary hypothesis test

$$\begin{cases} H_0: \quad \boldsymbol{\theta}_1 = \ldots = \boldsymbol{\theta}_T = \boldsymbol{\theta}_0 & \& \quad \boldsymbol{\Phi}_1 \neq \ldots \neq \boldsymbol{\Phi}_T, \\ H_1: \quad \exists (t,t') \in \llbracket 1, T \rrbracket^2, \quad \boldsymbol{\theta}_t \neq \boldsymbol{\theta}_{t'} & \& \quad \boldsymbol{\Phi}_1 \neq \ldots \neq \boldsymbol{\Phi}_T \end{cases}$$

Problems

- Specify a model and parameters (empirical fit/robustness)
- Find a practical test statistic Λ (decision function)

Parametric statistical detection (3/4)

We expect a **High PD** and **Low PFA** from the detection process (Λ, λ)

IEEE RadarConf 2020

Parametric statistical detection (4/4)

Constant false alarm rate (CFAR)

```
A statistic \Lambda is said to be CFAR if \forall (\boldsymbol{\theta}_0, \boldsymbol{\theta}_1), \forall \lambda
```

 $\mathbb{P}\left(\Lambda(\{\{\mathbf{x}_i^t\}_{i=1}^n\}_{t=1}^T;\boldsymbol{\theta}_0|\mathbf{H}_0) > \lambda\right) = \mathbb{P}\left(\Lambda(\{\{\mathbf{x}_i^t\}_{i=1}^n\}_{t=1}^T;\boldsymbol{\theta}_1|\mathbf{H}_0) > \lambda\right)$

Example of a non CFAR statistic:

ntro	Data	Motivating CM	2-Step CD	1-Step CD	UAVSAR	

Gaussian modeling for statistical CD

Multivariate Gaussian distribution

 $\mathbf{x} \sim \mathbb{C}\mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma}) \text{ with } \mathbb{E}\left[\mathbf{x}\right] = \boldsymbol{\mu} \text{ and } \mathbb{E}\left[\mathbf{x}\mathbf{x}^{H}\right] = \boldsymbol{\Sigma} \text{ if it has for p.d.f.}$

$$p_{\mathbf{x}}(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\pi^{p}|\boldsymbol{\Sigma}|^{-1}} \exp\left\{-(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{H}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

Motivations:

- Empirical fit to SAR data (central limit theorem)
 - zero mean ($\mu = 0$)
 - **correlation** between channels ($\Sigma \neq \alpha I$)
- **Practical theoretical results** from statistics and signal processing literature

Gaussian covariance-based CD (1/2)

- Modeled by $\mathbf{x}_i^t \sim \mathbb{C}\mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_t)$
- ullet Change in time \Leftrightarrow change in $oldsymbol{\Sigma}_t$
- Omnibus test ($oldsymbol{ heta}_t = oldsymbol{\Sigma}_t, \, oldsymbol{\Phi}_t = arnothing)$

$$\begin{cases} H_0: \quad \boldsymbol{\Sigma}_1 = \ldots = \boldsymbol{\Sigma}_T = \boldsymbol{\Sigma}_0\\ H_1: \quad \forall (t, t') \in [\![1, T]\!]^2, \, \boldsymbol{\Sigma}_t \neq \boldsymbol{\Sigma}_{t'} \end{cases}$$

[Conradsen et al., 2003] "A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data," IEEE Trans. on Geoscience and Remote Sensing, vol. 41, no. 1, pp. 4-19, 2003.

•	•				
Intro	Data 00000000	Motivating CM	2-Step CD	1-Step CD	Conclusio

- Problem : Σ_t are **unknown** in practice \Rightarrow requires **estimates**
- Many options to design Λ !
 - Plug-in detectors (2-step detection)
 - Statistical criteria (1-step detection)

• Overviews:

[Ciuonzo et al., 2017] "On Multiple Covariance Equality Testing with Application to SAR Change Detection," IEEE Trans. on Signal Processing, vol. 65, no. 19, pp. 5078-5091, 2017.

[Mian et al., 2020] "An Overview of Covariance-based Change Detection Methodologies in Multivariate SAR Image

Time Series", book chapter, Change Detection and Image Time-Series Analysis, Wisley, to appear.

Content

- Motivations
- Plan of this tutorial

Motivating covariance based approaches

- Change detection problem
- Statistical detection framework
- Covariance for SAR CD

Plug-in Gaussian detectors (2-step CD)

- Principle
- Sample covariance matrix
- Matrix distances
- - Generalized likelihood ratio test.
 - Terrell (gradient) statistic
 - Wald statistic
- **Experiments on UAVSAR data**
- **Conclusion of Part 1**

			2-Step CD			
000000	00000000	0000000000		000000000	0000000	

2-step change detection

- Covariance matrix estimation (feature extraction)
- Evaluation of a **distance** (feature comparison)

Sample covariance matrix (SCM)

Let $\{\mathbf{x}_i\}_{i=1}^n$ following $\mathbf{x}\sim\mathbb{C}\mathcal{N}(\mathbf{0},\mathbf{\Sigma})$, the ML estimate of $\mathbf{\Sigma}$ is

$$\hat{\boldsymbol{\Sigma}}_{ ext{SCM}} = rac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^H$$

- Simple to implement
- Wishart distributed \longrightarrow well established properties
- Not robust to non-Gaussian/outliers (cf. Part 2)

Intro DDDDDDDD	Data	Motivating CM	2-Step CD	1-Step CD	UAVSAR	
Distai	nces between	covariance matric	es			
Fi	robenius	$d_{\mathrm{Fro}}(\boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_2) = \ \boldsymbol{\Sigma}_1 \ $	$- {old \Sigma}_2 ig\ _F^2$			
S	pectral Log	$d_{ ext{Log}}(\mathbf{\Sigma}_1,\mathbf{\Sigma}_2) = \ \log($	$(\mathbf{\Sigma}_1) - \log(\mathbf{\Sigma}_1)$	$\ 2_2) \ _F^2$		
Н	Iotelling-Lawley	$d_{ ext{HTL}}(oldsymbol{\Sigma}_1,oldsymbol{\Sigma}_2) = ext{Tr} \left\{$	$\boldsymbol{\Sigma}_1\boldsymbol{\Sigma}_2^{-1}\big\}$		[Akbari et al., 20	016]
К	L divergence	$d_{ ext{KL}}(\mathbf{\Sigma}_1,\mathbf{\Sigma}_2) = ext{Tr}\left\{\mathbf{\Sigma}_1,\mathbf{\Sigma}_2 ight\}$	$\mathbf{\Sigma}_1^{-1}\mathbf{\Sigma}_2 \big\} + \mathbf{lo}$	$\operatorname{g}\left(\mathbf{\Sigma}_1 / \mathbf{\Sigma}_2 ight)$	[Nascimento et	al., 2019]
W	Vasserstein	$d_{\mathrm{W}}(\mathbf{\Sigma}_{1},\mathbf{\Sigma}_{2})=\mathrm{Tr}\left\{\mathbf{\Sigma}_{1}^{{}} ight.$	$\Sigma_1 + \Sigma_2 - 2$	$\left(\mathbf{\Sigma}_2^{1/2} \mathbf{\Sigma}_1 \mathbf{\Sigma}_2^{1/2} ight)^{1/2}$] [Mian et al., 202	20]
R	ao	$d_{\operatorname{Rao}}(\boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_2) = \alpha \sum_{i=1}^{n}$	$\sum_{i=1}^{p} \log^2 \lambda_i + \{\lambda_i\}$	$\beta \left(\sum_{i=1}^{p} \log \lambda_i \right)^2$ $\}_{i=1}^{p} = \operatorname{eig}(\boldsymbol{\Sigma}_1^{-1} \boldsymbol{\Sigma}_2)$	[Ratha et al., 20	17]

IEEE RadarConf 2020

			2-Step CD		
000000	00000000	0000000000		000000000	0000000

2-step change detection

Gaussian plug-in detectors

$$\Lambda(\{\{\mathbf{x}_i^t\}_{i=1}^n\}_{t=1}^T) = d(\hat{\boldsymbol{\Sigma}}_{\text{SCM}}^1, \hat{\boldsymbol{\Sigma}}_{\text{SCM}}^2)$$

Advantages

- Practical anf flexible
- Estimates: many options
- Distance: various invariances
- Wishart characterization

Limitations

- T = 2
- CFAR: case by case study
- 2-step \rightarrow "suboptimal"?

Content

- Motivations
- Plan of this tutorial

- Change detection problem
- Statistical detection framework
- Covariance for SAR CD.
- Plug-in Gaussian detectors (2-step CD)
 - Principle
 - Sample covariance matrix
 - Matrix distances

G Gaussian statistical criteria (1-step CD)

- Generalized likelihood ratio test.
- Terrell (gradient) statistic
- Wald statistic
- **Experiments on UAVSAR data**
- **Conclusion of Part 1**

1-step change detection

- Model $\mathbf{x}_i^t \sim \mathbb{C}\mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_t)$
- Binary hypothesis test

$$\begin{cases} H_0: \quad \boldsymbol{\Sigma}_1 = \ldots = \boldsymbol{\Sigma}_T = \boldsymbol{\Sigma}_0 \\ H_1: \quad \forall (t, t') \in [\![1, T]\!]^2, \, \boldsymbol{\Sigma}_t \neq \boldsymbol{\Sigma}_{t'} \end{cases}$$

- \Rightarrow Derive Λ following well-established decision statistics
- Many criteria exist, but most of them are equivalent to either GLRT, t_1 , or Wald for the considered problem [Ciuonzo et al., 2017]

Generalized likelihood ratio test (GLRT) (1/3)

GLRT

[Kay and Gabriel, 2003]

Given the data $\{\{\mathbf{x}_i^t\}_{i=1}^n\}_{t=1}^T$, model $p_{\mathbf{x}}$ and test parameters $\{\boldsymbol{\theta}, \boldsymbol{\Phi}\}$, the GLRT is

$$\hat{\Lambda}_{\text{GLRT}} = \frac{\max_{\{\boldsymbol{\theta}_{t}, \boldsymbol{\Phi}_{t}\}_{t=1}^{T}} p_{\mathbf{x}} \left(\{\{\mathbf{x}_{i}^{t}\}_{i=1}^{n}\}_{t=1}^{T} ; \{\boldsymbol{\theta}_{t}, \boldsymbol{\Phi}_{t}\}_{t=1}^{T} \mid \mathbf{H}_{1}\right)}{\max_{\boldsymbol{\theta}_{0}, \{\boldsymbol{\Phi}_{t}\}_{t=1}^{T}} p_{\mathbf{x}} \left(\{\{\mathbf{x}_{i}^{t}\}_{i=1}^{n}\}_{t=1}^{T} ; \boldsymbol{\theta}_{0}, \{\boldsymbol{\Phi}_{t}\}_{t=1}^{T} \mid \mathbf{H}_{0}\right)} \overset{\mathbf{H}_{1}}{\underset{\mathbf{H}_{0}}{\gtrsim}} \lambda.$$

Generalized likelihood ratio test (GLRT) (2/3)

GLRT for covariance change detection

Assuming that the data $\{\{\mathbf{x}_i^t\}_{i=1}^n\}_{t=1}^T$ follows $\mathbf{x}_i^t \sim \mathbb{CN}(\mathbf{0}, \mathbf{\Sigma}_t)$, the GLRT for the test

$$\begin{array}{ll} \mathbf{H}_0: \quad \boldsymbol{\Sigma}_1 = \ldots = \boldsymbol{\Sigma}_T = \boldsymbol{\Sigma}_0 \\ \mathbf{H}_1: \quad \forall (t,t') \in \llbracket 1, T \rrbracket^2, \, \boldsymbol{\Sigma}_t \neq \boldsymbol{\Sigma}_t \end{array}$$

is

$$\hat{\Lambda}_{\rm G} = \frac{\left|\hat{\boldsymbol{\Sigma}}_{\rm SCM}^{0}\right|^{nT}}{\prod_{t=1}^{T} \left|\hat{\boldsymbol{\Sigma}}_{\rm SCM}^{t}\right|^{n}},$$

where $\hat{\boldsymbol{\Sigma}}_{\text{SCM}}^t$ is the SCM of $\{\mathbf{x}_i^t\}_{i=1}^n$ and $\hat{\boldsymbol{\Sigma}}_{\text{SCM}}^0$ is the SCM of $\{\{\mathbf{x}_i^t\}_{i=1}^n\}_{t=1}^T$

Generalized likelihood ratio test (GLRT) (3/3)

Univariate case: Incoherent change detection (ICD) [Mian et al., 2017] For p = 1, T = 2, the GLRT reduces to $\Lambda_{ICD}(\{x_i^1\}_{i=1}^n, \{x_i^2\}_{i=1}^n) = \frac{\left(\sum_{i=1}^n |x_i^1|^2 + \sum_{i=1}^n |x_i^2|^2\right)^2}{\sum_{i=1}^n |x_i^1|^2 \sum_{i=1}^n |x_i^2|^2}$

Generalized likelihood ratio test on the variance

38/59

Intro 000000	Data 00000000	Motivating CM	2-Step CD	1-Step CD	UAVSAR	

Terrell (gradient) statistic (1/2)

Terrell statistic

[Radhakrishna Rao, 1948, Terrell, 2002]

Given the data $\{\{\mathbf{x}_i^t\}_{i=1}^n\}_{t=1}^T$, model $p_{\mathbf{x}}$ and test parameters $\boldsymbol{\theta}$, the t_1 is

$$\Lambda_{t_1} = \frac{\partial \log p_{\mathbf{x}} \left(\{\{\mathbf{x}_i^t\}_{i=1}^n\}_{t=1}^T; \{\boldsymbol{\theta}_t, \boldsymbol{\Phi}_t\}_{t=1}^T \mid \mathbf{H}_1 \right)}{\partial \boldsymbol{\theta}^T} \bigg|_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}_0} \left(\hat{\boldsymbol{\theta}}_1 - \hat{\boldsymbol{\theta}}_0 \right)$$

t_1 statistic for covariance change detection

Assuming that the data $\{\{\mathbf{x}_i^t\}_{i=1}^n\}_{t=1}^T$ follows $\mathbf{x}_i^t \sim \mathbb{CN}(\mathbf{0}, \mathbf{\Sigma}_t)$, the t_1 for the test

$$\begin{cases} \mathbf{H}_0: \quad \mathbf{\Sigma}_1 = \ldots = \mathbf{\Sigma}_T = \mathbf{\Sigma}_0\\ \mathbf{H}_1: \quad \forall (t, t') \in \llbracket 1, T \rrbracket^2, \, \mathbf{\Sigma}_t \neq \mathbf{\Sigma}_t \end{cases}$$

is

$$\hat{\Lambda}_{t_1} = \frac{1}{T} \sum_{t=1}^{T} \operatorname{Tr} \left[\left(\left(\hat{\Sigma}_{SCM}^0 \right)^{-1} \hat{\Sigma}_{SCM}^t \right)^2 \right]$$

where $\hat{\boldsymbol{\Sigma}}_{\text{SCM}}^t$ is the SCM of $\{\mathbf{x}_i^t\}_{i=1}^n$ and $\hat{\boldsymbol{\Sigma}}_{\text{SCM}}^0$ is the SCM of $\{\{\mathbf{x}_i^t\}_{i=1}^n\}_{t=1}^T$

IEEE RadarConf 2020

00000000	

Wald statistic (1/2)

Wald statistic

[Wald, 1943]

Given the data $\{\{\mathbf{x}_i^t\}_{i=1}^n\}_{t=1}^T$, model $p_{\mathbf{x}}$ and test parameters $\boldsymbol{\theta}$, the Wald statistic is

$$\Lambda_{\text{Wald}} = (\hat{\boldsymbol{\theta}}_1 - \boldsymbol{\theta}_0)^H \left(\left[\mathbf{I}^{-1}(\hat{\boldsymbol{\theta}}_1) \right]_{\boldsymbol{\theta}} \right)^{-1} (\hat{\boldsymbol{\theta}}_1 - \boldsymbol{\theta}_0) \,,$$

1-Step CD

where $\mathbf{I}(\boldsymbol{ heta})$ is the Fisher information matrix of the estimation problem under the H_1

Intro DDDDDDD	Data 00000000	Motivating CM	2-Step CD	1-Step CD	UAVSAR	
Wald statis	stic (2/2)					

Wald statistic for covariance change detection

Assuming that the data $\{\{\mathbf{x}_i^t\}_{i=1}^n\}_{t=1}^T$ follows $\mathbf{x}_i^t \sim \mathbb{CN}(\mathbf{0}, \mathbf{\Sigma}_t)$, the Wald statistic for

H₀:
$$\Sigma_1 = \ldots = \Sigma_T = \Sigma_0$$

H₁: $\forall (t, t') \in [\![1, T]\!]^2, \Sigma_t \neq \Sigma_{t'}$

•			
ι.	c	•	
L	2	٦	
	~	-	

$$\hat{\Lambda}_{\text{Wald}} = n \sum_{t=2}^{T} \text{Tr} \left[\left(\mathbf{I} - \hat{\boldsymbol{\Sigma}}_{\text{SCM}}^{1} (\hat{\boldsymbol{\Sigma}}_{\text{SCM}}^{t})^{-1} \right)^{2} \right] - q \left(n \sum_{t=1}^{T} (\hat{\boldsymbol{\Sigma}}_{\text{SCM}}^{t})^{-T} \otimes (\hat{\boldsymbol{\Sigma}}_{\text{SCM}}^{t})^{-1}, \text{vec} \left(\sum_{t=2}^{T} \boldsymbol{\Upsilon}_{t} \right) \right)$$

with $\boldsymbol{\Upsilon}_{t} = N \left((\hat{\boldsymbol{\Sigma}}_{\text{SCM}}^{t})^{-1} - (\hat{\boldsymbol{\Sigma}}_{\text{SCM}}^{t})^{-1} \hat{\boldsymbol{\Sigma}}_{\text{SCM}}^{1} (\hat{\boldsymbol{\Sigma}}_{\text{SCM}}^{t})^{-1} \right)$ and $q(\mathbf{x}, \boldsymbol{\Sigma}) = \mathbf{x}^{\text{H}} \boldsymbol{\Sigma}^{-1} \mathbf{x}$

000000000

Some properties of the statistics

CFARness properties

The GLRT, t_1 and Wald statistics are CFAR w.r.t. the covariance parameter

In simulation: $\mathbf{x}_{k}^{t} \sim \mathbb{C}\mathcal{N}\left(\mathbf{0}_{n}, (\rho^{|i-j|})_{ii}\right)$.

Content

- Motivations
- Plan of this tutorial

- Change detection problem
- Statistical detection framework
- Covariance for SAR CD.
- Plug-in Gaussian detectors (2-step CD)
 - Principle
 - Sample covariance matrix
 - Matrix distances
 - - Generalized likelihood ratio test.
 - Terrell (gradient) statistic
 - Wald statistic

Conclusion of Part 1

					UAVSAR
000000	00000000	0000000000	00000	000000000	

Conclusio

Data set description

UAVSAR (courtesy of NASA/JPLCaltech, https://uavsar.jpl.nasa.gov)

Dataset	Resolution	Scene	p	Т	Size	Coordinates (top-left px)
UAVSAR SanAnd_26524_03 Segment 4 April 23, 2009 - May 15, 2011	Rg: 1.67m Az: 0.6m	Scene 1	3	2	$2360 imes 600 \ {\rm px}$	[Rg, Az] = [2891, 28891]
		Scene 2	3	2	$2300\times600~\mathrm{px}$	[Rg, Az] = [3236,25601]
Snjoaq_14511		Scene 3	3	17	$2300\times600~\mathrm{px}$	[Rg, Az] = [3236,25601]

Source: https://github.com/ammarmian

00000	00000000	00000000

CM 100000 -Step CD

1-Step CD

Conclusior

Data set description

Figure 2: UAVSAR Scene 1, ground truth from [Ratha et al., 2017, Nascimento et al., 2019]

			UAVSAR
000000	00000000	00000	

Data set description

Figure 3: UAVSAR Scene 2, ground truth from [Ratha et al., 2017, Nascimento et al., 2019]

47/59

00000	00000000

Motivating CM

2-Step CD

1-Step CD

Conclusior

Data set description

Figure 4: UAVSAR Scene 3, ground truth from [Mian et al., 2020]

IEEE RadarConf 2020

Intro 000000	Data 00000000	Motivating CM	2-Step CD	1-Step CD 000000000	UAVSAR	

Compared detectors

- Plug-in detectors using SCMs (T = 2)
 - $\Lambda_{\rm HTL}$ Hotelling-Lawley divergence
 - $\Lambda_{\rm KL}$ KL divergence
 - $\Lambda_{\mathcal{RG}}$ Riemannian distance (Rao distance with $\alpha = 1, \beta = 0$)
 - $\Lambda_{\mathcal{WG}}$ Wasserstein distance
- Gaussian statistical criteria ($T \ge 2$)
 - $\Lambda_{\rm G}~\text{GLRT}$
 - Λ_{t_1} Terrell statistic
 - $\Lambda_{\rm Wald}$ Wald statistic

Results scene 1-2 (T = 2)

Figure 5: ROC plots using a 5×5 local window for the scenes 1 and 2.

IEEE RadarConf 2020

ntro 000000	Data 00000000	Motivating CM	2-Step CD	1-Step CD	UAVSAR □□□□□□□□■	
Results sc	ene 3 ($T>2$))				

Figure 6: ROC plots using a 5×5 local window for the scene 3.

51/59

Content

- Motivations
- Plan of this tutorial

Motivating covariance based approaches

- Change detection problem
- Statistical detection framework
- Covariance for SAR CD.

Plug-in Gaussian detectors (2-step CD)

- Principle
- Sample covariance matrix
- Matrix distances

Gaussian statistical criteria (1-step CD)

- Generalized likelihood ratio test
- Terrell (gradient) statistic
- Wald statistic
- **Experiments on UAVSAR data**

Conclusion of Part 1

Intro 000000	Data 00000000	Motivating CM	2-Step CD	1-Step CD 000000000	UAVSAR	Conclusion
Conclusion	n					

- Change detection in multivariate image time series
- Statistical framework
 - assumes a distribution
 - Choose parameters of distribution
 - derive test statistics (decision function Λ)
- Gaussian framework with covariance matrix (good local feature to assess for changes with multivariate data)
 - Plug-in detectors (matrix distance) using the SCM
 - Statistical criteria: CFAR property

Akbari, V., Anfinsen, S. N., Doulgeris, A. P., Eltoft, T., Moser, G., and Serpico, S. B. (2016).
 Polarimetric SAR change detection with the complex hotelling-lawley trace statistic.

IEEE Transactions on Geoscience and Remote Sensing, 54(7):3953–3966.

Barber, J. (2015).

A generalized likelihood ratio test for coherent change detection in polarimetric sar.

IEEE Geoscience and Remote Sensing Letters, 12(9):1873–1877.

Bazi, Y., Bruzzone, L., and Melgani, F. (2006).

Automatic identification of the number and values of decision thresholds in the log-ratio image for change detection in sar images. IEEE Geoscience and Remote Sensing Letters, 3(3):349–353.

- Ciuonzo, D., Carotenuto, V., and Maio, A. D. (2017).
 On multiple covariance equality testing with application to SAR change detection.
 IEEE Transactions on Signal Processing, 65(19):5078–5091.
- Conradsen, K., Nielsen, A. A., Schou, J., and Skriver, H. (2003).
 A test statistic in the complex wishart distribution and its application to change detection in polarimetric SAR data.

IEEE Transactions on Geoscience and Remote Sensing, 41(1):4–19.

Hussain, M., Chen, D., Cheng, A., Wei, H., and Stanley, D. (2013).
 Change detection from remotely sensed images: From pixel-based to object-based approaches.

ISPRS Journal of Photogrammetry and Remote Sensing, 80:91 – 106.

🔋 Kay, S. M. and Gabriel, J. R. (2003).

An invariance property of the generalized likelihood ratio test. *IEEE Signal Processing Letters*, 10(12):352–355.

Mian, A., Breloy, A., Ginolhac, G., Ovarlez, J., and Pascal, F. (to appear in 2020).
 An overview of covariance-based change detection methodologies in multivariate sar image time series.

In Atto, A., editor, Change Detection and Image Time-Series Analysis. ISTE Science.

Mian, A., Ovarlez, J., Atto, A. M., and Ginolhac, G. (2019).
 Design of new wavelet packets adapted to high-resolution sar images with an application to target detection.

IEEE Transactions on Geoscience and Remote Sensing, 57(6):3919–3932.

Mian, A., Ovarlez, J. P., Ginolhac, G., and Atto, A. (2017). Multivariate change detection on high resolution monovariate sar image using linear time-frequency analysis.

In 2017 25th European Signal Processing Conference (EUSIPCO), pages 1942–1946. IEEE.

🔋 Nascimento, A. D. C., Frery, A. C., and Cintra, R. J. (2019).

Detecting changes in fully polarimetric SAR imagery with statistical information theory.

IEEE Transactions on Geoscience and Remote Sensing, 57(3):1380–1392.

Novak, L. M. (2005).

Coherent change detection for multi-polarization SAR.

In Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005., pages 568–573.

Radhakrishna Rao, C. (1948).

Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation.

Mathematical Proceedings of the Cambridge Philosophical Society, 44(1):50–57.

🔋 Ratha, D., De, S., Celik, T., and Bhattacharya, A. (2017).

Change Detection in Polarimetric SAR Images Using a Geodesic Distance Between Scattering Mechanisms.

IEEE Geoscience and Remote Sensing Letters, 14(7):1066–1070.

Terrell, G. R. (2002).

The gradient statistic.

Computing Science and Statistics, 34(34):206–215.

Wald, A. (1943).

Tests of statistical hypotheses concerning several parameters when the number of observations is large.

Transactions of the American Mathematical Society, 54(3):426–482.